CHAPTER 9

VISUAL ANALYSIS IN SINGLE-CASE
RESEARCH

Jason C. Bourret and Cynthia J. Pietras

The visual analysis, or inspection, of graphs show-
ing the relation between environmental (indepen-
dent) variables and behavior is the principal method
of analyzing data in behavior analysis. This chapter
is an introduction to such visual analysis. We begin
by describing the components, and construction,

of some common types of graphs used in behavior
analysis. We then describe some techniques for ana-
lyzing graphic data, including graphs from common
single-subject experimental designs.

TYPES OF GRAPHS AND THEIR
CONSTRUCTION

Of the many ways to graph data (see Harris, 1996),
the graph types most frequently used by behavior
analysts are cumulative frequency graphs, bar
graphs, line graphs, and scatterplots. Each of these is
described in more detail in this section.

Cumulative Frequency Graphs

Cumulative frequency graphs show the cumulative
number of responses across observation periods.
The earliest, and most common, such graph used by
behavior analysts is the cumulative record. In the
other graph types discussed in this section, mea-
sures of behavior during an observation period are
collapsed into a single quantity (e.g., mean response
rate during a session) that is represented on a graph
by a single data point. By contrast, cumulative
records show each response and when it occurred
during an observation period. Thus, cumulative
records provide a detailed picture of within-session
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behavior patterns (see Ferster & Skinner,
1957/1997). An example of a cumulative record is
shown in Figure 9.1. On a cumulative record, equal
horizontal distances represent equal lengths of time;
equal vertical distances represent equal numbers of
responses. The slope of the curve in a cumulative
record indicates the rate of responding. Researchers
sometimes include an inset scale on cumulative
records to indicate the rate of responding repre-
sented by different slopes, although usually more
precise calculations of rate are also provided. Small
vertical lines oblique to the prevailing slope of the
line, traditionally called pips, typically indicate rein-
forcer deliveries. When the response pen reaches the
top of the page, it resets to the bottom, producing a
straight vertical line. Researchers may also program
the response pen to reset at designated times (e.g.,
when a schedule change occurs), to visually separate
data collected under different conditions. Cumula-
tive records were traditionally generated by now-
obsolete, specially designed machines (cumulative
recorders). More contemporarily, computer software
programs that record and plot each response as it
occurs have been used to generate these records.
Cumulative records can also be constructed after
data collection is complete, if the time of occurrence
of each response and all other relevant events during
a session are recorded.

Although the cumulative record was one of the
most commonly used graphs in the early years of the
experimental analysis of behavior, it has since fallen
out of favor as researchers increasingly present data
averaged across a single or multiple sessions. It is
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FIGURE9.1. Example of patterns that may be observed on a cumulative record.

Cumulative responses are shown on the vertical axis, and time is shown on the
horizontal axis. Each response moves the response pen a constant distance in
the vertical direction, and the paper moves vertically at a constant speed. Shown
(right to left) are smooth curves indicating constant rates of responding, grainy
curves indicating irregular patterns of responding, shallow curves indicating low
rates of responding, and steep curves indicating high rates of responding. Flat
portions indicate no responding. Pips (downward deflections of the response
pen) usually indicate reinforcer deliveries. Movements of the event pen are used
to signal changes in experimental contingencies or stimulus conditions. Data are

hypothetical.

useful in the experimental analysis of behavior not
as a primary means of data analysis, but as a means
of monitoring within-session performance. Another
notable exception to the decline of the cumulative
record is research published by Gallistel and his col-
leagues (e.g., Gallistel et al., 2007). In this research
line, cumulative records (some of them quite cre-
atively constructed with more than simple responses
on the vertical axis) are used extensively to better
understand the process by which organisms allocate
their behavior between concurrently available
sources of food.

Bar Graphs

Bar graphs show discrete categories (i.e., a nominal
scale; Stevens, 1946) along the horizontal (x) axis
and values of the dependent variable on the vertical
(y) axis (Shah, Freedman, & Vekiri, 2005). In
behavior analysis, bar graphs are often used to show
percentages (e.g., of correct responses) or average
performance across stable sessions or conditions. As
shown in Figure 9.2, bar graphs facilitate compari-
sons of performances (i.e., the height of each bar)
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across conditions. Typically, bars are separated

from each other, but related bars may be grouped
together. One variation of the standard (vertical) bar
graph is a horizontal bar graph, in which the cate-
gorical variable is plotted on the y-axis. On these
graphs, the length of the bar along the x-axis shows
the value of the dependent variable. Bars graphs may
also be drawn so that bars can deviate in either
direction from a center line. Such graphs may be
used, for example, to show increases or decreases
from baseline values that are represented by a center
horizontal line at zero. Bar graphs are similar to his-
tograms, but histograms (in which the bars touch
each other) have interval x-axis values and typically
show frequency distributions (see Figure 9.3). In
bar graphs, the y-axis scale usually begins at the
lowest possible value (e.g., zero) but may begin at a
higher value if the low range would be devoid of
data. Constraining the lower range of y-axis values
will make differences across conditions appear
bigger than they would have been had the range
extended to zero, a factor to consider when evaluat-
ing the clinical (or other) importance of the visually
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FIGURE9.2. Examples of bar graphs. Data are hypo-
thetical.

0.32 -
0.28 4
0.24 -
0.20
0.16 4
0.12 4
0.08 4
0.04 -
0.00 -

Proportion of Responses

0 1 2 3 4 5 6 7 8 9 =10
Interresponse Time Bins (s)

FIGURE9.3. Example of a histogram. Data are hypo-
thetical.

apparent difference. When bar graphs show mea-
sures of central tendency (e.g., means), error bars
(the vertical lines in Figure 9.2) should be included
to depict the variance in the data (e.g., between-
session differences in percentage correct).

Visual Analysis in Single-Case Research

When group statistical designs are used, bar
graphs frequently summarize the differences in
group mean performances. Reliance on statistical
analyses of grouped data may lead to the omission of
error bars from such graphs, a practice that obscures
the size of individual differences within groups. Fig-
ure 9.4 shows a variation on the between-groups bar
graph that displays the performance of individual
participants (individual data points) while maintain-
ing the ease of comparing measures of central ten-
dency (height of the bars). Graphs constructed in
this way make it possible to evaluate 10 what extent
the height of the bar describes the behavior of indi-
vidual participants. A second advantage of this type
of bar graph is that it allows readers to evaluate
whether the within-group variance is normally dis-
tributed, an important factor when evaluating the
appropriateness of the statistical analyses used.
Finally, the graphing conventions of Figure 9.4
encourage the researchers to consider those individ-
uals in the treatment group for whom the treatment
produced no positive effect. As often noted by
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FIGURE 9.4. A bar graph that shows mean perfor-
mance and the performance of individuals making up
the mean. The height of the bar shows the mean percent-
age of urine samples negative for cocaine and opiates,
and the closed circles show the percentage of negative
samples for each individual undergoing employment-
based abstinence reinforcement treatment for cocaine
dependence. From “Employment-Based Abstinence
Reinforcement as a Maintenance Intervention for the
Treatment of Cocaine Dependence: A Randomized
Controlled Trial,” by A. DeFulio, W. D. Donlin, C. J.
Wong, and K. Silverman, 2009, Addiction, 104, p. 1535.
Copyright 2009 by John Wiley & Sons, Ltd. Used with
permission.
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Sidman (1960), the data from these individuals
serve to illustrate that the behavior is not fully
understood and, by investigating the factors affect-
ing these individuals’ behavior further, more effec-
tive interventions will follow.

Line Graphs (Time Series and Relational)
Line graphs are used to depict behavior across time
(time-series line graphs) or relations between two
variables (relational line graphs; see Tulte, 1983).
With time-series line graphs (e.g., see Figure 9.5),
the horizontal axis (referred to as the abscissa or the
x-axis) illustrates the time point at which each data
point was collected, and behavior is plotted at each
of these time points on the vertical y-axis (ordinate).
On relational line graphs, the x-axis shows values of
the independent variable, and the y-axis shows a
central tendency measure of the dependent variable.
Data points in both types of line graphs are con-
nected with straight lines.

Figure 9.5 shows the parts of a time-series line
graph. Axis labels indicate the variables plotted. If
multiple graphs appear in a figure with the same
axes, then, to reduce the amount of text in the fig-
ure, only the x- and y-axes on the bottom and left-
most graphs, respectively, are labeled (for an
example, see Figure 9.6). The scales of both the
x- and y-axes are divided into intervals. Successive
intervals on an axis are equally sized and are marked
with short lines, called tick marks, that intersect the
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FIGURE 9.5. Diagram of parts of a time-series line
graph. Data are hypothetical.
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axis. Tick marks can point inward or outward, but
they should point outward if inward-pointing ticks
would interfere with the data. Tick marks are
labeled to indicate the interval value. Tick-mark
intervals should be frequent enough that a reader
can determine the value of a data point, but not so
frequent that the axis becomes cluttered. Intervals
between major ticks may be marked with unlabeled
minor ticks. In Figure 9.5, for example, every fifth
interval is labeled, and minor tick marks indicate
intervals between them. If multiple graphs appear in
a figure with the same axis scale, then only the tick
marks on the bottom and left graphs, respectively,
are labeled. The x- and y-axis scales should be large
enough to encompass the full range of the data;
however, they should not exceed the data range, or
the graph will contain empty space and compress
the data unnecessarily. Starting the axis scales at val-
ues below the minimum data range may make data
points at the minimum value (e.g., zero) more visi-
ble by preventing them from falling directly on the
x- or y-axis. As with bar graphs, line graphs nor-
mally start at zero, but if the data range is great,
there may be a break in the axis with the larger
numbers indicated after the break.

When plotting data for individual participants
in separate graphs within a single figure, it is
sometimes not realistic to represent data for each
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FIGURE 9.6. Examples of linear and logarithmic (log)
scales. The upper two graphs show data plotted using
linear y-axis scales. The lower two graphs show the
same data, but plotted using log (base 10) y-axis scales.
Data are hypothetical.




participant within a single range on the y-axis (e.g.,
the range for one participant may be between one
and 10 responses and for another, between 400 and
450 responses). It is always better to use the same
ranges on the y-axis, but when this is not possible,
different ranges for different participants may be
used, and this deviation must be noted.

The aspect ratio, or the height-to-width ratio of
the y- and x-axes, should not distort the data. Too
great an aspect ratio (i.e., a very tall graph) may
magnify variability, or small effects, and too small an
aspect ratio (i.e., a very long graph) may obscure
important changes in behavior or variability in a
data set (Parsonson & Baer, 1986). A 2:3 y:x aspect
ratio (Parsonson & Baer, 1978) or a 1.0:1.618 aspect
ratio (Tufte, 1983) has been recommended. Breaks
on the y-axis may be used if there are outlier data
points. Outliers are idiosyncratic data points that far
exceed the range of other data (e.g., data points
more than 3 standard deviations from the mean).
Breaks on the x-axis may be used if there are breaks
in data collection.

Data points are marked with symbols, and a data
path is created by connecting the data points with
straight lines. When multiple data paths are shown
on a graph, each data type is represented by a dis-
tinct symbol, and a central figure legend provides a
concise description of each path. A common graph-
ing convention in applied behavior analysis is to
describe each data path with text and an arrow
pointing from the text to the corresponding data
path. Using a central legend, as in Figure 9.5, facili-
tates the transmission of information because scan-
ning the graph is not required to find figure legend
information. A second advantage of the central leg-
end is that it avoids the possibility that arrows
pointing to a particularly high or low data point may
influence the visual analysis of the data.

Phase changes in time-series line graphs are
denoted by vertical lines extending the length of the
y-axes. Phase-change lines are placed between the
last data point of a condition and the first data point
of the new condition. Data paths are broken across
phase-change lines to avoid the appearance that
behavior change produced by an independent vari-
able occurred before the change in condition.
Descriptive phase labels are centered at the top of
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the space allocated 1o each phase. Figure legends,
and phase labels, are usually placed within the rect-
angular space created by the x- and y-axes. Figure
captions are placed below graphs and describe what
is plotted, the axes, any abbreviations or symbols
that appear in the graph, and any axis breaks.

Linear interval scales are the most common
scales used in time-series line graphs, but logarith-
mic (log) interval scales and semi-log interval scales
(in which the x- or y-axis is log scaled and the other
is linearly scaled) are also used. Log scales are help-
ful in more normally distributing data sets that are
skewed toward large values (Cleveland, 1994),
transforming curvilinear data into linear data (Shull,
1991) and showing proportional changes in behav-
ior (Cooper, Heron, & Heward, 1987). Because the
logarithm of zero is undefined, log scales have no
zero. Log base 10, base 2, and base e (natural logs)
are the most common log scales (see Cleveland,
1994, for some recommendations for the use of vari-
ous log bases).

Iustrations of data plotted on both a linear scale
and a semi-log (base 10) scale are shown in Figure
9.6. In the upper left graph, response rates in Phase
B appear 10 increase more quickly between sessions
than in Phase A. This difference, however, may be
attributed to the greater absolute value of the
response rate. Plotted on a log scale (lower left
graph), it is visually apparent that the rate of change
is similar in both phases. In the upper right graph,
there appears to be a large shift in performance from
Phase A to Phase B. The arithmetic scale of the
y-axis, however, compresses the low rates in Phase A.
When data are plotted on a log scale, the low rates
are more visible and the increase in responding in
Phase B can be seen to be part of an increasing trend
that began in Phase A.

Scatterplots

Scatterplots present a dependent variable in relation
to either an independent variable (in which case the
graph may be described as a relational graph: see
Tufte, 1983) or another dependent variable. When
both measures are dependent variables, either measure
can be plotted on the horizontal axis, although if
one measure is conceptualized as a predictor vari-
able, it is plotted on the x-axis, and the other, the
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FIGURE 9.7. Example of a scatterplot. Data
are hypothetical.

criterion variable, is plotted on the y-axis. An exam-
ple of a scatterplot is shown in Figure 9.7. In this
figure, which shows data from a hypothetical experi-
ment investigating choice between two concurrently
available reinforcement schedules, the log of the
ratio of response rates on the right and left alterna-
tives is plotted on the y-axis and the log of the ratio
of reinforcement rates is plotted on the x-axis. In
scatterplots, data points are not connected with
lines, usually because measures are independent of
each other (e.g., they are data points from different
conditions or participants) or because they are not
sequentially related. Sometimes, however, lines or
curves are fit to data on scatterplots to indicate the
form of the relation between the two variables (see
Interpreting Relational Graphs section). The line in
Figure 9.7 shows the best-fitting linear regression
line. That data points fall near this line indicates a
linear relation (matching) between response rates
and reinforcement rates.

Other Types of Graphs

The types of graphs we have discussed do not repre-
sent an exhaustive list of the types of graphs used by
behavior analysts and subjected to visual analysis.
For example, sometimes examining data across time
and within individual sessions is useful, in which
case a three-dimensional graph would be appropri-
ate, with the dependent variable on the y-axis,
within-session time on the x-axis, and successive
sessions on the third (z) axis (e.g., Cancado &
Lattal, 2011). Three-dimensional graphs may also
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be used to show other types of interactions, such as
changes in interresponse time distributions on a
reinforcement schedule across sessions (Gentry,
Weiss, & Laties, 1983) or effects of different

drug doses on response run length distributions
(Galbicka, Fowler, & Ritch, 1991).

Other graphing techniques have been used to
depict specific kinds of relations. Staddon and Sim-
melhag (1971), for example, used detailed flow
charts to graphically show the conditional probabili-
ties of different responses given an initial response.
Davison and Baum (2006) depicted the number of
responses to different alternatives in a choice experi-
ment as different-sized circles (bubbles). This tech-
nique could also be useful in showing, for example,
time allocated to playing with multiple toys by a
child across successive time periods.

These examples are but a few of specialized
graphs that may be useful in enhancing the visual
depiction of specific data sets or aspects of data sets.
For a more complete description of graph types, see
Harris (1996). Cleveland and McGill (1984, 1985)
offered some useful advice on how to choose graph
types to show data with maximum clarity. In under-
taking a graphical analysis of data, there are no
immutable rules concerning which graphs to use
for depicting what. Use is based on precedence, but
investigators also need to think outside the axes
(so to speak) in using graphs to tell the story of
their data.

General Recommendations for

Graph Construction

Many features of a graph influence a reader’s reac-
tion to the data. Even small details such as tick
marks, axis scaling, data symbols, aspect (y:x) ratio,
and so forth can affect a graph’s impact, and poor
graphing methods can lead 1o misinterpretations of
results (Cleveland, 1994). Creating graphs that are
accurate, meaningful, rich in information, yet read-
ily interpretable, therefore, requires planning, exper-
imenting, reviewing, and close attention to detail
(Cleveland, 1994; Parsonson & Baer, 1992). For
some additional recommendations on producing
useful graphs, see Baron and Perone (1998), Cleve-
land (1994), Johnston and Pennypacker (1993),
Parsonson and Baer (1978, 1986), and Tufte (1983).




When preparing graphs for publication, the Publica-
tion Manual of the American Psychological Association
(American Psychological Association, 2010) also
offers valuable advice.

INTERPRETING GRAPHICAL DATA

In the sections that follow, we describe some strate-
gies for visually analyzing graphical data presented
in cumulative records, bar graphs, time-series line
graphs, and scatterplots. We also discuss the visual
analysis of graphical data generated by some com-
monly used single-subject experimental designs.

If the graph is published, the first step in visual
analysis is to determine what is plotted by reading
all of the text describing the graph, including the
axis labels, condition labels, figure legend, and fig-
ure caption. The next step is the analysis of patterns
in the graphical data.

Interpreting Cumulative Records

In cumulative records, changes in rate of responding
and variability in responding are analyzed by exam-
ining changes in the slope of the records (Johnston
& Pennypacker, 1993). Several patterns that may be
distinguished in cumulative records are shown in
Figure 9.1, a hypothetical cumulative record. The
first smooth curve shows responding occurring at a
steady, constant rate, whereas the second shows
grainy responding, or responding occurring in
unsystematic bouts of high and low rates separated
by varying periods of not responding. The flat por-
tion of the third curve indicates no responding. The
greater slope of the fourth curve compared with the
third curve indicates a higher rate of responding.
Cumulative records also allow an analysis of
responding at a more local level. For example, in
Figure 9.1, the second curve from the left, between
the third and fourth pip, shows that responding
occurred first at a low rate, then rapidly increased,
then gradually decreased again before the reinforcer
delivery. Such a fine-grained analysis is not possible
with other graph types.

Interpreting Bar Graphs
When visually analyzing bar graphs, the relative
heights of bars are compared across conditions (see
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Figure 9.2). When making this comparison, atten-
tion should be given to the y-axis scale to determine
whether the range has been truncated. In bar graphs
depicting average performance within a phase, a
critical element to evaluate is the length of the error
bars. Very long error bars suggest that the perfor-
mance may not have been stable, and so it will be
important to evaluate the stability criterion used. If
the range of the data is used, long error bars may
also occur if an outlying data point was included in
the data set depicted in the graph. If so, then the
average value depicted by the height of the bar may
not represent most of the data; in such cases, the
median would be a better measure of central ten-
dency. Error bars also indicate the overlap of data
points across conditions. For example, Figure 9.2
shows results from a hypothetical experiment that
evaluated the effects of three time-out durations
after incorrect responses on match-to-sample perfor-
mance. The height of the bar is the mean, and the
error bar shows the standard deviation. In the top
graph, the error bars are long, and the mean of the
20-second condition overlaps with the variance in
the 5-second condition. Thus, differences between
the 5- and 20-second time-out duration conditions
are less convincing than the difference between the
no time-out and the 20-second conditions. Error
bars provide no information about trends in the
data, however, and a reader must look to the text of
the article or to other graphs for evidence that the
performances plotted in a bar graph represent stable
responding.

Care should also be taken to consider which
measure of variability is represented by the error
bars. The standard deviations plotted in Figure 9.2
quantily the average deviation of each data point
from the condition mean and, therefore, are an
appropriate measure of variability when mean val-
ues are reported (interquartile ranges usually
accompany medians). Some errors bars will depict
the standard error of the mean, and readers should
interpret these with caution. The standard error
of the mean is used to estimate the standard devia-
tion among many different means sampled from a
normally distributed population of values. As such,
it tells one less about the variability in the data than
does the standard deviation. Moreover, the standard

205




Bourret and Pietras

error of the mean is calculated by dividing the sam-
ple standard deviation by the square root of n (i.e.,
the number of values used to calculate the mean);
thus, error bars depicting the standard error of the
mean will be increasingly more narrow than the
standard deviation as the number of data points
included in the data set increases. If the standard
error of the mean had been plotted in Figure 9.2
instead of the standard deviation, the visually appar-
ent difference between all three conditions would
seem greater even with no change in the data set
plotted.

The general strategies we have outlined (i.e.,
consider the difference in the measure of central
tendency in light of the variability in the data to
evaluate how convincing the difference is) are for-
malized by common inferential statistical tests.
Behavior analysts wanting to reach a broader audi-
ence of scientists (including extramural grant
reviews), professionals, and public policymakers
may wish 10 use these tests in addition to conduct-
ing a careful visual analysis of the data.

Analyzing Time-Series Data in

Line Graphs

The analysis of time-series data is the most prevalent
visual inspection practice in behavior analysis. Basic
and applied behavior analysts use visual analysis
techniques to determine when behavior has stabi-
lized within a phase, to judge whether behavior has
changed between phases, and to evaluate the evi-
dence that the experimental variable has affected
individual behavior.

Evaluating stability. Once an experiment is under-
way, one of the first decisions a researcher must
make is, When should a phase change be made? In
most cases, this question is answered by evaluating
the stability (i.e., consistency) of responding over
time (see Chapter 5, this volume). If behavior is
not stable before the condition change (e.g., there
is a trend in the direction of the anticipated treat-
ment effect), then attributing subsequent shilts in
responding to the experimental manipulation will
be unconvincing (Johnston & Pennypacker, 1993).
Moreover, an unstable baseline (i.e., one contain-
ing a great deal of between-session variability) will
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inhibit one’s ability to detect small but clinically
important effects of an experimental manipulation
(Sidman, 1960). Thus, whenever possible, condi-
tions should remain unchanged until stability is
achieved.

Stability of time-series data may be assessed by
visual inspection or quantitative criteria (see Perone,
1991; Sidman, 1960; Chapter 5, this volume). Both
will evaluate bounce and trend, with the latter
catching patterns that may be missed by the quanti-
tative criterion. Bounce refers to unsystematic
changes in behavior across successive data points,
whereas trend refers to a systematic (directional)
change (Perone, 1991).

Figure 9.8 shows baseline data for two partici-
pants. The baseline depicted in the top panel has
considerably more between-session variability than
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FIGURE 9.8. Hypothetical baseline data
with added mean lines (solid horizontal
lines), range lines (long dashed horizon-
tal lines), trimmed range lines (short
dashed horizontal lines), and regression
lines (solid trend lines).




that depicted in the lower panel. The extent to
which the researcher will be concerned with this
bounce in the data will depend on how large the
treatment effect is likely to be. If a very large effect is
expected, then the intervention data should fall well
outside of the baseline range, and therefore the rela-
tively weak experimental control established in the
baseline phase would be acceptable. If, however, a
smaller effect is anticipated, then the intervention
data are unlikely to completely separate from the
range of data in the baseline, making detection of an
intervention effect impossible. Under these condi-
tions, the researcher would be well served to further
identify the source of variability in the baseline.
Indeed, if the researcher succeeds in this endeavor, a
potent behavior-change variable may be identified.
Visually analyzing bounce may be facilitated by
the use of the horizontal lines shown in Figure 9.8.
The solid horizontal line shows the mean of the
entire phase (i.c., the mean level of the data path)
and allows one to see graphically how much each
data point deviates from an ostensibly appropriate
measure of central tendency.! The dashed lines fur-
thest from the mean line illustrate the range of the
data (i.e., they are drawn through the single data
point furthest from the mean), whereas the dashed
lines within these dashed lines show a trimmed
range in which the furthest data point from the
mean is ignored (see Morley & Adams, 1991).
Drawing range and trimmed range lines may be use-
ful when considering how large the intervention
effect will have to be 1o discriminate a difference
between the baseline and intervention data. Clearly,
to produce a visually apparent difference, the inter-
vention implemented in the top panel will have to
produce a much larger effect than that implemented
in the bottom panel. Neither range lines nor
trimmed range lines will depict changes in variabil-
ity within a condition, however. To visualize
changes in variability within conditions, Morley and
Adams (1991) suggested plotting trended range
lines. To construct these, the data in a condition are
divided in half along the x-axis, and the middle
x-axis value of each half is located. For each half, the
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minimum and maximum y-axis data points are
located, and those values are marked at the corre-
sponding x-axis midpoint. Finally, two lines on the
graph are drawn connecting the two minimum data
points from each half and the two maximum data
points from each half. Converging lines suggest
decreasing variability (bounce) across the phase,
diverging lines suggest increasing variability, and
parallel lines suggest that the variability is constant.

The next characteristic of the baseline data to be
considered, when deciding when to change phases,
is the extent to which there is a trend in the data. A
first step can be to plot a line of best fit (i.e., linear
regression) through the baseline data. Any graphing
software package will suffice. Researchers should be
aware, however, that a line of best fit can be unduly
affected by outliers (Parsonson & Baer, 1992). One
alternative to linear regression that was recom-
mended by Cleveland (1994) is the curve-smoothing
loess technique. The loess technique is less sensitive
to outliers and does not assume that data will con-
form to any particular function (e.g., a straight
line). This technique smoothes data and makes pat-
terns more visible by plotting, for each x-axis value,
an estimate of the center of the distribution of y val-
ues falling near that x value (akin to a moving aver-
age; for descriptions, see Cleveland, 1994; Cleveland
& McGill, 1985). Linear regression, however, has
the advantage of being a more widely used tech-
nique, and it quantifies the linear relation between
the two variables (i.e., estimates the slope and
y-intercept).

In the upper panel of Figure 9.8, the line of best
fit indicates an upward trend in the baseline data,
suggesting that if no intervention is implemented,
the rate of response will continue to increase over
time. This is problematic if one expects the interven-
tion to increase response rates. In the lower panel of
Figure 9.8, the trend line is horizontal and overlaps
with the mean line. Thus, in the absence of an
experimental manipulation, the best prediction
about future behavior is that it will remain stable
with little between-session variability. Baseline data
need not be completely free of trends before a phase

'Plotting a mean line is appropriate only if the data in the phase are free of extreme values that will pull the mean line away from the center of the dis-
tribution. Under such cases, a median line would be a better visual analysis tool
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is ended and the intervention is begun. If the base-
line data are trending down (up), and the interven-
tion is anticipated to increase (decrease) responding,
then the baseline trend is of little concern. A modest
trend in the direction of the anticipated intervention
effect is also acceptable as long as the intervention
proves to produce a large change in trend and mean
level. Finally, continuing a baseline until it is free of
trends and the bounce is minimal is sometimes
impractical. In applied settings, it may be unethical
to continue a baseline until stability has been
achieved because to do so delays the onset of treat-
ment. These practical and ethical concerns, how-
ever, must be balanced with the goal of constraining
the effects of extraneous variables so that orderly
effects of independent variable manipulations can be
observed in subsequent conditions. It may be of lit-
tle use (and may also be considered unethical) to
conduct an intervention if the data are so variable
that it is impossible to interpret the effects of treat-
ment. Thus, researchers should be especially con-
cerned with achieving stability when treatment effects
are unknown or are expected to be small (i.e., when
one is conducting research rather than practice).

Visual inspection of trends within a data set
sometimes reveals nonlinear repetitive patterns, or
cycles. Some cycles result from feedback loops cre-
ated by self-regulating behavior-environment inter-
actions (Baum, 1973; Sidman, 1960), whereas others
result from extraneous variables. Identifying the
source of cyclical patterns is sometimes necessary to
produce behavior change. In Figure 9.9, for exam-
ple, every other data point is higher than the preced-
ing one. Such a pattern could be the result of
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FIGURE 9.9. Example of a figure
showing a cyclical pattern. Data
are hypothetical.

different experimenters conducting sessions,
changes in levels of food deprivation, or perhaps
practice effects if two sessions are conducted each
day. Cycles may be difficult to detect if there is

a good deal of between-session variability, but
plotting data in various formats may help reveal
cyclical patterns. For example, plotting each data
point as a deviation from the mean using a vertical
bar graph can make patterns in the variability more
apparent (see Morley & Adams, 1991).

The same strategies [or evaluating the stability of
baseline data are used to evaluate the stability of
data in an intervention phase. Figure 9.10 repeats
the data from Figure 9.8, but adds data from an
intervention phase. In the upper panel, the line
of best fit reveals an upward trend in the interven-
tion phase, although the final four data points sug-
gest that the behavior may have asymptoted. The
researcher collecting these data should continue the
intervention phase 1o determine whether the perfor-
mance has reached an asymptote or will increase fur-
ther given continued exposure to the intervention.

Responses per Min

Sessions

FIGURE 9.10. Hypothetical baseline and intervention
data with added mean lines (solid horizontal lines),
range lines (long dashed horizontal lines), trimmed
range lines (short dashed horizontal lines), and regres-
sion lines (solid trend lines). Baseline data are the same
as in Figure 9.8.




In the lower panel, a similar upward trend may be
observed in the intervention phase, but over the
final 10 sessions of the phase, the performance has
stabilized because there is little bounce around the
mean line and no visually apparent trend.

Evaluating differences across phases. The second
use of visual analysis of time-series data involves
comparing the baseline and intervention data to
determine whether the difference makes a compel-
ling case that behavior has changed between phases.
Determining whether behavior change was an effect
of the intervention (assuming a compelling differ-
ence is observed) is a different matter, and one that
we consider in more detail next.

Five characteristics of the data should control the
evaluation of behavior change across phases. The
first is the change in level. Level refers to the imme-
diate change in responding from the end of one
phase to the beginning of the next (Kazdin, 1982).
Level is assessed by comparing the last data point
from a condition to the first data point of the subse-
quent condition. In the top graph of Figure 9.10,
the change in level was a decrease from about 46
responses per minute to about 26 per minute. In the
lower panel, the level increased from about 30 to 48
responses per minute. Level may be used to evaluate
the magnitude of treatment effect. Large changes in
level suggest a potent independent variable, but only
when the data collected in the remainder of the
intervention phase continue at the new level, as in
the lower panel of Figure 9.10. The level change in
the upper panel of Figure 9.10 is inconsistent with
most of the remaining intervention data and, there-
fore, appears to be another instance of uncontrolled
between-session variability. As this example illus-
trates, a level change is neither necessary nor suffi-
cient to conclude that behavior changed in the
intervention phase.

The second, related characteristic that will affect
judgments of treatment effects is latency to change.
Latency to change is the time required for change in
responding to be detected after the onset of a new
experimental condition (Kazdin, 1982). To evaluate
latency to change, a researcher must examine multi-
ple data points after the condition change to deter-
mine whether a consistent change in level or a

Visual Analysis in Single-Case Research

change in trend occurs (at least three data points are
required to detect a trend). A short latency to
change indicates that the experimental manipulation
produced an immediate effect on behavior, whereas
a long latency to change indicates either that an
extended exposure to the change in the independent
variable is required before behavior changes (such
as during extinction) or that the change is caused by
an extraneous variable. Again, we consider the ques-
tion of the causal relation between the behavior
change and the intervention later in the chapter.

In the top panel of Figure 9.10, approximately
six sessions were required before the trend and
mean level in the intervention phase appear distin-
guishable from baseline. In the lower graph, changes
in trend and mean level were observed in the first
three sessions after the phase change, showing more
clearly that the data in the two phases are distinct.
Although short latencies to change suggest that
behavior has changed across phases, this change
may be temporary and, therefore, additional obser-
vations should be made until one is convinced that
the change is enduring. How many additional obser-
vations are necessary will be affected by factors such
as baseline variability (as in the top panel of Figure
9.10) and how novel the finding is (skeptical scien-
tists prefer to have many observations when the
intervention is novel). Under most conditions, an
intervention that produces a large but temporary
behavior change is of limited utility.

The third characteristic of time-series data that is
used when visually evaluating differences across
phases is the mean shift (Parsonson & Baer, 1992).
Mean shift refers to the amount by which the means
differ across phases. In both panels of Figure 9.10,
there is an upward mean shift from baseline to
intervention. The bottom graph, however, illus-
trates a shift that is visually more compelling. The
reason for this takes us to the fourth characteristic
controlling visual analysis activities: between-phase
overlap. In the upper panel of Figure 9.10, as the
range lines illustrate, five of eight data points in the
intervention condition fall within the range of the
preceding baseline data, and, therefore, the differ-
ence is not convincing. Perhaps, in the top graph, if
additional data were collected during the interven-
tion phase, and assuming responding remained at
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the upper plateau characterizing the final interven-
tion sessions, the difference might be compelling. In
the lower graph of Figure 9.10, the level change,
mean shift, and limited between-phase overlap in
range make the difference visually apparent.

The fifth characteristic of the data that will affect
visual evaluation of between-phase differences is
trend. As noted earlier, if the baseline data are trend-
ing up (or down) and responding increased (or
decreased) during the intervention phase (upper
graph of Figure 9.10), then the mean shift will not
be convincing unless the trend line is much steeper
in the intervention phase than at baseline. In the
upper graph of Figure 9.10, the baseline data show a
slight upward trend. Data in the subsequent inter-
vention phase show a steeper trend. The greater the
difference in trend is, the clearer it is that the mean
shift in the intervention is not simply a continuation
of the baseline trend.

When evaluating mean shifts, floor or ceiling
effects must be considered. These effects occur
when performance has reached a minimum or maxi-
mum, respectively, beyond which it cannot change
further. For example, if baseline response rates are
low and an intervention is expected to decrease
responding, mean shifts may be small because
response rates have little room to further decrease.

Readers skeptical of visual analysis practices may
be unsettled by the use of terms and phrases such as
judgment, visually apparent, and much steeper. How
much steeper is “much steeper?” Although any
interpretation of data requires the researcher make a
variety of judgment calls (e.g., which statistic to use,
how to handle missing data), Fisher, Kelley, and
Lomas (2003) sought to reduce the number of judg-
ments by developing the conservative dual-criterion
(CDC) technique 1o aid the visual analysis of single-
case data. This method, illustrated in Figure 9.11,
involves extending the baseline mean and trend
lines into the intervention phase and raising both of
these lines by 0.25 standard deviation (or lowering
the lines by 0.25 standard deviation, if the intervention
is anticipated to decrease responding). A difference
across conditions is judged as meaningful when the
number of intervention-phase data points falling
above both lines (or below both lines in the case of
an intervention designed to decrease a behavior)
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FIGURE 9.11. Example of the conservative dual-

criterion technique applied to hypothetical intervention
data. In the baseline phase, solid horizontal lines are
mean lines, and solid trend lines are regression lines.

To analyze intervention effects, these lines are super-
imposed onto the intervention phase and raised by 0.25
standard deviation from the baseline means. See text for
details.

exceeds a criterion based on the binomial equation
(i.e., exceeds the number that would be expected by
chance). Fisher et al. found that the use of CDC pro-
cedures improved agreement on visual inspection
(data were hypothetical, and intervention effects
were computer generated).

Figure 9.11 shows the CDC applied to the data
shown in Figure 9.10. In the top panel, three data
points in the intervention phase fall above the two
criterion lines. Following the table presented in
Fisher et al. (2003) for treatment conditions with
eight data points, seven data points should be above
both lines to conclude that a compelling difference
exists between phases. In the lower panel, the CDC
requires that 12 of the 15 data points in the inter-
vention condition appear above both lines, a crite-
rion easily met, so the researcher may conclude that
behavior changed across phases.

Although the CDC method appears to improve
the accuracy of judgments of behavior change, only




a few studies have yet investigated this technique
(Fisher et al., 2003; Stewart, Carr, Brandt, &
McHenry, 2007). The Fisher et al. (2003) procedure
is, of course, but one technique for making visual
assessment of data more objective. It is ultimately
incumbent on the investigator or therapist to pro-
vide convincing evidence of an effect, whether
through some formal set of rules as illustrated by
Fisher et al. or by amplifying the effect to the point
at which reasonable people agree on it, through
increased control over both independent and extra-
neous variables.

Assuming that appropriate decisions were made
about stability and a visually apparent behavior
change was observed from baseline to the interven-
tion phase, the next task is 1o evaluate the role of the
intervention in that behavior change. Evaluating the
causal role of the intervention requires that an appro-
priate experimental design be used. a topic falling
under the scope of Chapter 5, this volume. Here, we
largely confine our discussion to the visual analysis
techniques appropriate to the most commonly used
single-case research designs. In these sections of the
chapter, the visual analysis focuses on answering the
question, “Did the intervention change behavior?”

Comparison designs. The data shown in the lower
panel of Figure 9.11 come from a comparison design
(or A-B design). There is evidence of a convinc-

ing change in behavior across conditions, level and
mean level differ, variability and overlap of the data
points across conditions are not interfering, and the
latency to change is short. Despite stable data, one
cannot conclude that the intervention produced the
visually apparent behavior change. Although the
rapid level change suggests an intervention effect,
one cannot rule out extraneous variables that may
have changed at the same time that the intervention
was introduced (e.g., in addition to the interven-
tion, Participant 2 may have been informed that il
his productivity did not improve, his job would be
in jeopardy). When visually analyzing data, a differ-
ence in behavior between two phases is insufficient
evidence that the intervention, and not extraneous
variables, produced the change.

Reversal designs. In a reversal design, the experi-
mental variable is introduced and removed, and

Visual Analysis in Single-Case Research

Systematic behavior changes with each manipula-
tion provide evidence for a causal relation. Figure
9-12 shows the previously considered data set now
extended to include a second baseline and a second
intervention condition. The bottom graph is eas-

ily interpreted. The visually apparent difference
between the first baseline phase and the first inter-
vention phase is reversed in the return to baseline.
In the second baseline phase, responding was well
outside the range in which data should have fallen
had no experimental manipulation been imple-
mented. Further evidence for an intervention effect
is that responding returned to the level observed

in the original baseline. The reintroduction of the
intervention (fourth phase) reverses the downward
trend in the second baseline, yielding a striking level
shilt, mean shift, and minimal variability. There is
very little overlap in the data across conditions, the
latency to change is short, and there are no trends
that make interpretation difficult. The mean level is
close to the mean level obtained in the first exposure
to the intervention, thus replicating the effect. These
data thus make a strong case for the intervention as
an effective means of influencing behavior.
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FIGURE9.12. Example of a reversal design. Data from
the first baseline and intervention phases are the same
as shown in Figures 9.8 and 9.10. Data are hypothetical.
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The upper panel of Figure 9.12 tells a different
story. When the baseline conditions are reestab-
lished in the third phase, there is a precipitous
downward trend in behavior. Although this behav-
ior change is consistent with the removal of an effec-
tive intervention, the between-session variability in
the preceding condition renders an unconvincing
the argument for a between-phase behavior change.
Clearly, the hypothetical researcher who collected
these data failed to continue the first intervention
phase long enough for a stable pattern of behavior to
develop. If responding had stabilized in the upper
plateau reached at the end of the first intervention
phase, the sharp reduction in responding in the sec-
ond baseline may have been more compelling,
When the intervention is again introduced, the
downward trend levels off, but the data points over-
lap considerably with the data points for the preced-
ing baseline condition. Furthermore, the mean level
in the second intervention phase did not closely rep-
licate the mean level of the first intervention phase.

Multiclement designs. Figure 9.13 shows data
from three hypothetical multielement experimental
designs (Barlow & Hayes, 1979). In this design,
conditions alternate (often after every session), and
consistent level changes are suggestive of a func-
tional (causal) relation between variables arranged
in the condition and the behavior of interest. Visual
analysis of multielement design data requires evalu-
ation of sequence effects in addition to variability,
mean shift, trend, overlap, and latency to change.
Detection of sequence effects requires close atten-
tion to the ordering of conditions and patterning in
the data (i.e., if responding in one condition is con-
sistently elevated when preceded by one of the other
conditions).

The data in Figure 9.13 represent response rate
in three different conditions, two interventions, and
a no-intervention control condition. The top graph
is easily interpreted. The mean level in Intervention
1 is higher than in the other two conditions, and
there is no difference in mean level between Inter-
vention 2 and the no-intervention condition. The
data are relatively stable (i.e., there is little variabil-
ity), and there are no trends to complicate interpre-
tation. Thus, the difference in behavior between the
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FIGURE 9.13. Examples of data from multielement
designs. Data are hypothetical.

conditions is obvious. The effects of each experi-
mental manipulation on response rate are reliable
(each repetition of a condition allows a test of reli-
ability), and it would be extremely unlikely that
some extraneous variable would happen to produce
increases in response rate in each Intervention 1
session and none in any other session. Finally, the
effect of Intervention 1 does not appear to be depen-
dent on the prior condition, and in at least one case,
the effect lasts when two consecutive Intervention
1 sessions are completed. These data provide com-
pelling evidence that Intervention 1 is responsible
for producing higher response rates than either
Intervention 2 or the no-intervention condition.
The middle graph contains more within-
condition variability. The mean level is higher in the




Intervention | condition; however, there is consid-
erable overlap in the range of response rates
observed in each condition. Because it is not clear
that behavior is distinct across conditions, the ques-
tion of causation is moot. In the third graph, the
mean level of the data in Intervention 1 is high, the
mean level in the no-intervention condition is low,
but the data in Intervention 2 are more difficult to
interpret. During some sessions, the response rate is
low; during others, it is high. This graph shows a
hypothetical sequence effect. Each time an Interven-
tion 2 session follows an Intervention 1 session, the
response rate is high; otherwise, the response rate is
low. The rate during the Intervention 2 sessions is
affected by the preceding condition, which compli-
cates interpretation of the effects of Intervention 2.
If the high-rate Intervention 2 sessions were merely
a carry-over effect of Intervention 1, then the no-
intervention sessions that follow Intervention 1
sessions should show comparable high rates. A
researcher who obtains findings of this sort will con-
duct further experimentation to clarify the processes
responsible for the sequence effect.

Multiple-baseline designs. Multiple-baseline
designs are frequently used in applied settings,
either when it would be unethical 1o remove the
treatment or because the treatment is expected to
produce an irreversible effect. The design involves a
series of comparison designs in which the researcher
implements the treatment variable at different
times across participants, behaviors, or contexts. A
researcher visually analyzing data from a multiple-
baseline design must evaluate whether there are
convincing changes in mean level from baseline to
treatment conditions, whether the effects are rep-
licated across baselines, and whether changes in
behavior occur only when the treatment is imple-
mented for each baseline.

Figure 9.14 illustrates data from a multiple-
baseline design. In the top panel, a brief baseline
precedes the intervention. The intervention pro-
duces level changes and mean shifts easily discrim-
inated as behavior change. There is no latency to
change, and there are no trends or overlap between
data points across conditions to complicate data
interpretation. As noted in the Comparison
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FIGURE 9.14. Example of data from a multiple-
baseline design. Data are hypothetical.

Designs section, however, these data alone are
insufficient 1o support causal statements. The
behavior change could also have been caused by an
extraneous variable that changed at the same time
as the intervention (e.g., a change in classroom
contingencies). If the latter were true, then one
might expect this variable to affect behavior in the
other baselines. To evaluate this, one examines the
other baselines for behavior change that corre-
sponds with the introduction of the intervention in
the first graph (i.e., at Session 5). Figure 9.14
shows evidence of this, which strengthens the case
that the intervention produced the behavior change
observed in the top panel.

Further evidence that the intervention is related to
the behavior change must be gathered in the remaining
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panels of Figure 9.14 because the intervention is
implemented at different points in time across the
baselines. In the second graph, the data in baseline
show an upward trend. Because the effect of the inter-
vention is a decrease in the mean level, it does not
negatively affect identifying the change in behavior in
the second phase. In examining the third graph, these
baseline data were unaffected by the phase change
depicted in the second graph, which provides further
evidence that the behavior change observed in the
first two graphs is a function of the intervention and
not some uncontrolled variable. In the third graph,
the baseline is relatively stable, and there is a large,
immediate reduction in response rate after implemen-
tation of the intervention, which replicates the effects
observed in the first two graphs, providing strong evi-
dence of the effects of the intervention.

Changing-criterion designs. In changing-criterion
designs, a functional relation between the interven-
tion and behavior change is established by (a) peri-
odically changing the contingency specifying which
responses (e.g., those with a force between 20 and
30 g) will lead to experimenter-arranged conse-
quences and (b) observing that behavior approxi-
mates the specified criterion (Hall & Fox, 1977;
Hartmann & Hall, 1976). Typically, the criterion in
graphs of changing-criterion designs is indicated

by horizontal lines at each phase. Visual analysis

of changing-criterion designs, as with that of other
designs, requires an assessment of variability, level,
mean shift, trend, overlap, and latency to change but
also requires an assessment of the relation between
behavior and the criterion.

Figure 9.15 shows data from Hartmann and Hall
(1976), who used a changing-criterion design to
assess the effectiveness of a smoking cessation pro-
gram. During the intervention, the participant was
fined a small amount of money for smoking above a
criterion number of cigarettes and earned a small
amount of money for smoking fewer cigarettes. In
the top graph, the number of cigarettes smoked per
day is shown across successive days of the interven-
tion. In baseline, the number of cigarettes smoked
per day was stable over the first 6 days but fell
precipitously on Day 7. Ideally, the researchers
would not have begun the intervention on Day 8, as
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FIGURE 9.15. Example of data from a changing-
criterion design. The figure shows the number of ciga-
rettes smoked per day. Solid horizontal lines depict
the criterion for each phase. From “The Changing
Criterion Design,” by D. P. Hartmann and R. V. Hall,
1976, Journal of Applied Behavior Analysis, 9, p. 529.
Copyright 1976 by the Society for the Experimental
Analysis of Behavior, Inc. Used with permission.

they did, because if a trend line was drawn through
these baseline data, the subsequent decreases in
smoking would be predicted to occur in the absence
of an intervention. Had the researchers collected
more baseline data, they would likely have found
that Day 7 was uncharacteristic of this individual's
rate of smoking and could have more clearly estab-
lished the stable rate of baseline smoking.

In subsequent phases (B-G), the criterion number
of cigarettes was systematically decreased, as indi-
cated by the horizontal line in each phase. Changes
in the criterion tended to produce level changes, with
many subsequent data points falling exactly on the
criterion specified in that phase. Each phase estab-
lishes a new mean level approximating the criterion.
There are no long latencies to change, and the vari-
ability in the data and overlap in data points across
conditions are not sufficient to cause concern.
Finally, with the exception of Phase F, there is no
downward trend in any phase, suggesting that if the
criterion remained unchanged, smoking would
remain at the current depicted level. Thus, the visual
analysis of these data raises concerns about the
downward trend in the baseline, but these concerns
are largely addressed by the repeated demonstrations
of control over smoking rate in each condition. If the
study were ongoing and concerns remained, the




researchers could set the next criterion (Phase H)
above the last one. If smoking rate increased to the
new criterion, then additional evidence for interven-
tion control would be established while nullifying
concerns about the downward trend in baseline.

Interpreting Relational Graphs

Researchers who conduct time-series research may
report their outcomes using relational graphs. In these
cases, each data point represents the mean (or another
appropriate measure of central tendency) of steady-
state responding from a condition. When evaluating
these data, measures of variability, such as error bars,
are also assessed to help determine whether respond-
ing was stable (see Interpreting Bar Graphs section).

Data on relational graphs are evaluated by ana-
lyzing the clustering and trend of the data points.
Data that appear horizontal across all values of the
x-axis indicate that the independent or predictor
variable has no effect on behavior or that there is no
correlation between the two dependent variables.
Sometimes behavior changes in a linear fashion
across the range of x-axis values of the independent
variable. When both axes of the graph are scaled lin-
early, a linear relation indicates that changing the
independent variable produces a constant increase
or decrease in behavior. Nonlinear relations indicate
that the behavioral effect of the independent variable
changes across x-axis values. Figure 9.16 provides
an example. Here, the subjective value of a $10
reward is plotted as a function of the delay 1o its
delivery. Both axes are linear, and the relation
between the variables is nonlinear.

Relational graphs, when properly constructed,
allow the researcher to quickly evaluate the relation
between variables. It is common, however, to evaluate
relational data more precisely with quantitative meth-
ods, including curve-fitting techniques (e.g., linear
and nonlinear regression), Pearson’s correlation
coefficient, and quantitative models (see Chapters 10
and 12, this volume). Curve-fitting techniques clarify
the form of the relation between the independent
and dependent variables, and Pearson’s correlation
coefficient quantifies the relation between two depen-
dent variables. Quantitative models may describe
more complex behavior—environment relations and
are used to make predictions about behavior. Even
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FIGURE 9.16. Example of curve fitting.
From “Delay or Probability Discounting
in a Model of Impulsive Behavior: Effect
of Alcohol,” by J. B. Richards, L. Zhang,
S. H. Mitchell, and H. de Wit, 1999,
Journal of the Experimental Analysis of
Behavior, 71, p. 132. Copyright 1976 by
the Society for the Experimental Analysis
of Behavior, Inc. Used with permission.

when quantitative methods are used to describe data,
however, visual analysis is used as a supplement. For
example, visual analysis can help researchers choose
which type of curve to fit to the data, evaluate whether
data trends are linear and thus appropriate for calcu-
lating Pearson correlation coefficients, or determine
whether the data have systematic deviations from the
fit of a quantitative model. For example, Figure 9.16
shows the best fits of both exponential and hyperbolic
models to the subjective value of delayed money. The
figure shows that the exponential model systemati-
cally predicts a lower y-axis value than that obtained
at the highest x-axis value.

Reference lines may be added to relational
graphs (or other graph types) to provide a point of
comparison to the data. For instance, in a gmph
showing discrete-trial performances, such as
matching-to-sample, reference lines may be plotted
at values expected by chance. In a graph depicting
choice data, reference lines might be plotted at val-
ues indicative of indifference.

CONCLUSION

Graphs provide clear and detailed summaries of
research findings that can guide scientific decisions
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and efficiently communicate research results. Visual
analysis, as with any form of data analysis, requires
training and practice. The use of visual analysis as a
method of data interpretation requires graph readers
to make sophisticated decisions, taking into account
numerous aspects of the data. This complexity can
make the task seem daunting or subjective; how-
ever, visual analysis in conjunction with rigorous
experimental procedures is a proven, powerful, and
flexible method for generating scientific knowledge.

The development of effective behavioral technol-
ogies provides evidence of the ultimate utility of the
visual analysis techniques used in behavior-analytic
research. Data analyzed by means of visual inspec-
tion have contributed to a technology that produces
meaningful behavior change in individuals across a
wide range of skill domains and populations, including
individuals with no diagnoses and those with diag-
noses including attention deficithyperactivity disor-
der, autism, an array of developmental disabilities,
pediatric feeding disorders, and schizophrenia, to
name a few (Didden, Duker, & Korzilius, 1997;
Lundervold & Bourland, 1988; Weisz, Weiss, Han,
Granger, & Morton, 1995). Because of its history of
effective application and advantages for the study of
the behavior of individuals, behavior analysts
remain committed to visual inspection as a primary
method of data analysis.
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