
CHAPTER 9

Choice and Preference

IN THIS CHAPTER

1. Find out about how to study choice and preference in the laboratory.
2. Learn about the matching law as a basic behavioral principle of choice and prefer-
ence.

3. Discover how behavior analysts have used mathematics to quantify the basic
processes of choice and preference.

4. Inquire about optimal foraging, behavioral economics, and self-control.
5. Learn about the quantitative law of effect and its application to human behavior.

Over the course of a day, an individual makes many decisions that range from ones of
great importance to ones of small consequence. A person is said to make a decision when
buying a new car, when choosing to spend an evening with one friend rather than another,
or when deciding what to eat for supper. Animals also make a variety of decisions; they may
choose mates with particular characteristics, select one type of food over another, or decide
to leave a territory.
From a behavioral view, the analysis of choice is concerned with the distribution of

operant behavior among alternative sources of reinforcement. When several choices are
available, one alternative may be chosen more frequently than others. When this occurs,
it is called preference for an alternative source of reinforcement. For example, a person
may choose between two food markets (a large supermarket and the corner store) on the
basis of price, location, and variety. Each time the individual goes to one store rather than
the other, he or she is said to choose. Eventually, the person may shop more frequently
at the supermarket than at the local grocery, and when this occurs the person is showing
preference for the supermarket alternative.
Many people describe choosing to do something, or a preference for one activity over

another, as a subjective experience. For example, you may simply like one person better
than others, and based on this you feel good about spending a day with that person. From a
behavioral perspective, your likes and feelings are real, but they do not provide an objective
scientific account of what you decide to do. To provide that account, it is necessary to
identify the conditions that affected your attraction to (or preference for) the individual.

Experimental Analysis of Choice and Preference

For behavior analysts, the study of choice is based on principles of operant behavior. In
previous chapters, operant behavior was analyzed in situations in which one response class
was reinforced on a single schedule of reinforcement. For example, a child is reinforced
with contingent attention from a teacher for correctly completing a page of arithmetic
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problems. The teacher provides one source of reinforcement (attention) when the child
emits the target operant (math solutions). The single-operant analysis is important for the
discovery of basic principles and applications. However, this same situationmay be analyzed
as a choice among alternatives. The child may choose to do math problems or emit other
behavior (e.g., look out thewindow or talk to another child). This analysis of choice extends
the operant paradigm or model to more complex environments in which several response
and reinforcement alternatives are available.
In the natural environment, there are many alternatives that schedule reinforcement for

operant behavior. A child may distribute time and behavior among parents, peer group, and
sport activities. Each alternative may require specific behavior and provide reinforcement
at a particular rate and magnitude. To understand, predict, or change the child’s behavior,
all of these response–consequence relationships must be taken into account. Thus, the
operant analysis of choice and preference begins to contact the complexity of everyday life
and offers new principles for application.

The Choice Paradigm

The Two-Key Procedure

In the laboratory, choice and preference are investigated by arranging concurrent sched-
ules of reinforcement. Figure 9.1 shows a concurrent operant setting. In the laboratory, two
or more simple schedules (i.e., FR, VR, FI, or VI) are simultaneously available on different
response keys (Ferster & Skinner, 1957). Each key is associated with a separate schedule

FIG. 9.1. A two-key operant chamber for birds. Schedules of food reinforcement are arranged

simultaneously on each key. Author Photo.
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of reinforcement, and the organism is free to distribute behavior between the alternative
schedules. The distribution of time and behavior among alternatives is the behavioral mea-
sure of choice and preference. For example, a food-deprived bird may be exposed to a
situation in which the left response key is programmed to deliver 20 presentations of the
food hopper each hour, whereas the right key delivers 60 reinforcers an hour. To obtain
reinforcement from either key, the pigeon must respond according to the schedule on that
key. If the bird responds exclusively to the right key (and never to the left) and meets the
schedule requirement, then 60 reinforcers will be delivered each hour. Because the bird
could have responded to either side, we may say that it prefers to spend its time on the right
alternative.
Concurrent schedules of reinforcement have received considerable research attention,

because they may be used as an analytical tool for understanding choice and preference.
This selection of an experimental paradigm or model is based on the reasonable assumption
that contingencies of reinforcement contribute substantially to choice behavior. Simply
stated, all other factors being equal, the more reinforcement provided by an alternative,
the more time and energy spent on that alternative. For example, in choosing between
spending an evening with two friends, the one who has in the past provided the most social
reinforcement will probably be the one selected. Reinforcement may be social approval,
affection, interesting conversation, or other aspects of the friend’s behavior. The experience
of deciding to spend the evening with one rather than the other may be something like,
“I just feel like spending the evening with John.” Of course, in everyday life, choosing is
seldom as uncomplicated as this, and a more common decision might have been to spend
the evening with both friends. However, to understand how reinforcement processes are
working, it is necessary to control the other factors so that the independent effects of
reinforcement on choice may be observed.

Concurrent Ratio Schedules

Figure 9.2 shows a two-key concurrent-operant setting for humans. Consider that you
are asked to participate in an experiment in which you may earn up to $50 an hour. As
an experimental participant, you are taken to a room that has two response keys separated
by a distance of 8 ft. Halfway between the two keys is a small opening just big enough
to place your hand in. The room is empty, except for the unusual-looking apparatus. You
are told to do anything you want. What do you do? You probably walk about and inspect
your surroundings and, feeling somewhat foolish, eventually press one of the response keys.
Immediately following this action, $1 is dispensed by a coin machine and is held on a plate
inside the small opening. The dollar remains available for about 5 s, and then the plate falls
away and the dollar disappears. Assuming that you have retrieved the dollar, will you press
one of the keys again? In reality, this depends on several factors: Perhaps you are wealthy
and the dollar is irrelevant; perhaps you decide to “get the best of the experimenter” and
show that you are not a rat; maybe you do not want to appear greedy, and so on. However,
assume for the moment that you are a typical poor student and you press the key again.
After some time pressing both keys and counting the number of key presses, you discover a
rule. The left key pays a dollar for each 100 responses, whereas the right side pays a dollar
for 250 responses. Does it make sense to spend your effort on the right key when you can
make money faster on the other alternative? Of course it does not, and you decide to spend
all of your work on the key that pays the most. This same result has been found with other
organisms. When two ratio schedules are programmed as concurrent schedules, then the
alternative that produces more rapid reinforcement is chosen exclusively (Herrnstein &
Loveland, 1975).
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FIG. 9.2. A two-key operant chamber for humans. Pressing the keys results in money from a coin

dispenser (middle), depending on the schedules of reinforcement. Author Photo.

Because ratio schedules result in exclusive responding to the alternative with the high-
est rate of payoff, these schedules are seldom used to study choice. We have discovered
something about choice: Ratio schedules produce exclusive preference (in contrast, see
McDonald, 1988, on how to program concurrent ratio schedules to produce response distri-
butions similar to those that occur on interval schedules). Although this result is interesting,
it suggests that other schedules should be used to investigate choice and preference. This
is because once exclusive responding occurs, it is not possible to study how responses are
distributed between the alternatives.

Concurrent Interval Schedules

Consider, however, what you might do if interval schedules were programmed on the
two keys. Remember that on an interval schedule a single response must occur after a
defined amount of time. If you spend all of your time pressing the same key, you will miss
reinforcement that is programmed on the other alternative. For example, if the left key is
scheduled to pay a dollar every 2min; and the right key, every 6min, then a reasonable tactic
is to spendmost of your time responding on the left key but every once in awhile to check out
the other alternative. This behavior will result in obtainingmost of themoney set up by both
schedules. In fact, when exposed to concurrent interval schedules, most animals distribute
their time and behavior between the two alternatives in such a manner (de Villiers, 1977).
Thus, the first prerequisite of the choice paradigm is that interval schedules must be used
to study the distribution of behavior.
Interval schedules are said to be independent of one another when they are presented

concurrently. This is because responding on one alternative does not affect the rate of
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reinforcement programmed for the other. For example, a fixed-interval 6-min schedule
(FI 6 min) is programmed to deliver reinforcement every 6 min. Of course, a response must
be made after the fixed interval has elapsed. Pretend that you are faced with a situation
in which the left key pays a dollar every 2 min (FI 2 min). The right key delivers a dollar
when you make a response after 6 min. You have 1 hr a day in the experiment. If you
just respond to the FI 2-min schedule, you would earn approximately $30. On the other
hand, you could increase the number of reinforcers an hour by occasionally pressing the
FI 6-min key. This occurs because the left key pays a total of $30 each hour and the right
key pays an additional $10. After many hours of choosing between the alternatives, you
may develop a stable pattern of responding. This steady-state performance is predictable.
You should respond for approximately 6 min on the FI 2-min alternative and obtain three
reinforcers (i.e., $3). After the third reinforcer, you may feel like switching to the FI 6-min
key, on which a reinforcer is immediately available. You obtain the money on this key and
immediately return to the richer schedule (left key). This steady-state pattern of responding
may be repeated over and over with little variation.

Concurrent Variable-Interval Schedules

Recall that there are twomajor types of interval schedules.Onvariable-interval schedules
(VI), the time between each programmed reinforcer changes, and the average time to
reinforcement defines the specific schedule (e.g., VI 60 s). Because the organism is unable
to discriminate the time to reinforcement on VI schedules, the regular switching pattern
that characterizes concurrent FI FI performance does not occur. This is an advantage for
the analysis of choice because the organism must respond on both alternatives and because
switching does not result always in reinforcement. Thus, operant behavior maintained by
concurrent VI VI schedules is sensitive to the rate of reinforcement on each alternative.
For this reason, VI schedules are typically used to study choice.

Alternation and the Changeover Response

At this point, the choice paradigm is almost complete. Again, however, consider what
you would do in the following situation. The two keys are separated and you cannot press
both at the same time. The left key now pays a dollar on a VI 2-min schedule, and responses
to the right alternative are reinforced on VI 6 min. The left key pays $30 each hour, and the
right one delivers $10 if you respond. Assuming you obtain all programmed reinforcers on
both schedules, you may earn $40 for each experimental session. What can you do to earn
the most per hour? If you stay on the VI 2-min side, you end up missing the 10 reinforcers
on the other alternative. However, if you frequently change over from key to key, most of
the reinforcers on both schedules will be obtained. This is in fact what most animals do
when faced with these contingencies (de Villiers, 1977).
Simple alternation between response alternatives prevents an analysis of choice, because

the distribution of behavior remains the same (approximately 50/50) no matter what the
programmed rates of reinforcement are. Frequent switching between alternatives may occur
because of the correlation between the rate of switching and the overall rate of reinforce-
ment (dollars per session). In other words, as the rate of switching increases, so does the
hourly payoff. Another way of looking at this alternation is that organisms are accidentally
reinforced for the changeover response. This alternation is called concurrent superstition
(Catania, 1966) and occurs because as time is spent on an alternative, the other schedule
is timing out. As the organism spends more time on the left key, the probability of a rein-
forcer being set up on the right key increases. This means that a changeover to the right
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alternative will be reinforced, even though the contingencies do not require the changeover
response. Thus, switching to the other response key is an operant that is inadvertently
strengthened.

The Changeover Delay

The control procedure used to stop rapid switching between alternatives is called a
changeover delay, or COD (Shull & Pliskoff, 1967). The COD contingency stipulates that
responses do not have an effect immediately following a change from one schedule to an-
other. After switching to a new alternative, a brief time is required before a response is
reinforced (e.g., 3-s delay). For example, if an organism has just changed to an alternative
that is ready to deliver reinforcement, there is a 3-s delay before a response is effective.
As soon as the 3-s delay has elapsed, a response is reinforced. Of course, if the schedule
has not timed out, the COD is irrelevant because reinforcement is not yet available. The
COD contingency operates in both directions whenever a change is made from one alter-
native to another. The COD prevents frequent switching between alternatives. To obtain
reinforcement, an organism must spend a minimal amount of time on an alternative before
switching to another schedule. For example, with a 3-s COD, changing over every 2 s will
never result in reinforcement. The COD is therefore an important and necessary feature of
the operant-choice procedure for the investigator.

Experimental Procedures To Study Choice

The basic paradigm for investigating choice and preference is now complete. In summary,
a researcher interested in behavioral choice should

1. arrange two or more concurrently available schedules of reinforcement
2. program interval schedules on each alternative
3. use variable- rather than fixed-interval schedules
4. require a COD in order to stop frequent alternation between or among the schedules

The Findley Procedure

An interesting variation on the basic choice procedure was described by Findley (1958).
The procedure involves a single response key that changes color. Each color is a stimulus that
signals a particular schedule of reinforcement. The color and the associated schedule may be
changed when a response is made to a second key. This key is called the changeover key. For
example, a pigeon may respond on a VI 30-s schedule that is signaled by red illumination of
the response key. When the bird pecks a second changeover key, the color on the response
key changes from red to blue. In the presence of the blue light, the pigeon may respond on
a VI 90-s schedule of reinforcement. Another response on the changeover key reinstates
the red light and the VI 30-s schedule. The advantage of the Findley procedure is that the
response of changing from one alternative to another is explicitly defined and measured.
Figure 9.3 compares the two-key and Findley procedures, showing that the Findley method
allows for the measurement and control of the changeover response.
Current evidence suggests that the same principles of choice account for behavior in both

the two-key and the changeover procedures. For this reason, researchers have not made a
theoretical distinction between them.However, such a distinctionmay be important for the
analysis of human behavior. Sunahara and Pierce (1982) have suggested that the two-key
procedure may provide a model for social interaction. For example, in a group discussion
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FIG. 9.3. Comparison of two-key and Findley procedures. Notice that the Findley method high-

lights the changeover response.

a person may distribute talk and attention to several group members. These members may
be viewed as alternative sources of social reinforcement for the person. On the other hand,
the changeover-key procedure may model role taking, in which an individual responds
differentially to another person. In this case, the individual may change over between
the reinforcement schedules provided by the other person as either a friend or a boss. For
example, while at work the changeover may be made by saying, “Could I discuss a personal
problem with you?” In other words, a person who is both your friend and your supervisor
at work may sometimes deliver social reinforcers as a friend and at other times as a boss.
Your social role may change when differential reinforcement (from supervisor or friend) is
provided by the other individual.

The Matching Law

In 1961, Richard Herrnstein (Fig. 9.4) published an influential paper that described the
distribution of behavior on concurrent schedules of positive reinforcement. He found that
pigeons matched relative rates of behavior to relative rates of reinforcement. For example,
when 90% of the total reinforcement was provided by schedule A (and 10% by schedule B),
approximately 90% of the bird’s key pecks were on this schedule. This relationship is known
as the matching law. To understand this law, we turn to Herrnstein’s (1961b) experiment.

Proportional Matching

Herrnstein’s Experiment

In this study, Herrnstein investigated the behavior of pigeons on a two-key concurrent
schedule. Concurrent VI VI schedules of food reinforcement were programmed with a 1.5-s
COD. The birds were exposed to different pairs of concurrent variable-interval schedules
for several days. Each pair of concurrent schedules was maintained until response rates
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FIG. 9.4. Richard Herrnstein. Reprinted with permis-

sion.

stabilized. That is, behavior on each schedule did not significantly change from session to
session. After several days of stable responding, a new pair of schedule values was presented.
The overall rate of reinforcement was held constant at 40 per hour for all pairs of schedules.
Thus, if the schedule on the left key was programmed to deliver 20 reinforcers an hour
(VI 3 min), then the right key also provided 20 reinforcers. If the left key supplied 10 re-
inforcers, then the right key supplied 30 reinforcers. The schedule values that Herrnstein
used are presented in Fig. 9.5.
The data in Fig. 9.5 show the schedules operating on the two keys, A and B. As previ-

ously stated, the total number of scheduled reinforcers is held constant for each pair of VI
schedules. This is indicated in the third column, in which the sum of the reinforcements
per hour (Rft/hr) is equal to 40 for each set of schedules. Because the overall rate of rein-
forcement remains constant, changes in the distribution of behavior cannot be attributed
to this factor. Note that when key A is programmed to deliver 20 reinforcers an hour, so
is key B. When this occurs, the responses per hour (Rsp/hr) are the same on each key.
However, the responses per hour (or absolute rate) are not the critical measure of prefer-
ence. Recall that choice and preference are measured as the distribution of time or behavior

FIG. 9.5. A table of schedule values and data. Reinforcement per hour (Rft/hr), responses per

hour (Rsp/hr), relative reinforcement (proportions), and relative responses (proportions) are shown.

Note: Adapted from Fig. 1 of “Relative and Absolute Strength of Responses as a Function of

Frequency of Reinforcement,” by R. J. Herrnstein, 1961b, Journal of the Experimental Analysis of

Behavior, 4, pp. 267–272.
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between alternatives. To express the idea of distribution, it is important to direct attention
to relative measures. Because of this, Herrnstein focused on the relative rates of response.
In Fig. 9.5, the relative rate of response is expressed as a proportion. That is, the rate of re-
sponse on key A is the numerator, and the sum of the rates on both keys is the denominator.
The proportional rate of response on key A is shown in the final column, labeled Relative
Responses.

Calculation of Proportions

Tocalculate the proportional rate of responses to keyA for the pair of schedulesVI 4.5min
VI 2.25 min, the following simple formula is used:

Ba/(Ba + Bb).

The value Ba is behavior measured as the rate of response on key A, or 1,750 pecks per hour.
The rate of response on key B is 3,900 pecks per hour and is represented by the Bb term.
Thus, the proportional rate of response on key A is

1,750/(1,750+ 3,900) = 0.31.

In a similar fashion, the proportion of reinforcement on key A may be calculated as

Ra/(Ra + Rb).

The Ra term refers to the scheduled rate of reinforcement on key A, or 13.3 reinforcers per
hour. Rate of reinforcement on key B is designated by the symbol Rb and is 26.7 reinforcers
each hour. The proportional rate of reinforcement on key A is calculated as

13.3/(13.3+ 26.7) = 0.33.

These calculations show that the relative rate of response (0.31) is very close to the relative
rate of reinforcement (0.33). If you compare these values for the other pairs of schedules,
you will see that the proportional rate of response approximates the proportional rate of
reinforcement.

Importance of Relative Rates

Herrnstein showed that the major dependent variable in choice experiments was the
relative rate of response. He also found that the relative rate of reinforcement was the
primary independent variable. Thus, in an operant-choice experiment, the researcher ma-
nipulates the relative rates of reinforcement on each key and observes the relative rate of
response to the respective alternatives.
Figure 9.5 shows that Herrnstein manipulated the independent variable, the relative

rate of reinforcement on key A, over a range of values. Because there are several values of
the independent variable and a corresponding set of values for the dependent variable, it is
possible to plot the relationship. Figure 9.6 shows the relationship between the proportional
rate of reinforcement, Ra/(Ra + Rb), and the proportional rate of response, Ba/(Ba + Bb),
for pigeon 231 based on the values in Fig. 9.5.

The Matching Equation

As the relative rate of reinforcement increases, so does the relative rate of response.
Further, for each increase in relative reinforcement there is about the same increase in the
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FIG. 9.6. Matching between proportional

rate of response and proportional rate of re-

inforcement for bird 231. Figure is based on

results from Herrnstein (1961b) and the data

reported in Fig. 9.5. Copyright 1961 by the

Society for the Experimental Analysis of Be-

havior, Inc. graph by author.

relative rate of response. This equality of the relative rates of reinforcement and the relative
rates of response is expressed as proportions in Equation 9.1.

Ba/(Ba + Bb) = Ra/(Ra + Rb). (9.1)

Notice that we have simply taken the Ba/(Ba+Bb) and theRa/(Ra+Rb) expressions, which
give the proportion of responses and reinforcers on key A, and mathematically stated that
they are equal. In verbal form, we are stating that relative rate of response matches (or
equals) the relative rate of reinforcement. This statement, whether expressed verbally or
mathematically, is known as the matching law. In Fig. 9.6, matching is shown as the solid
black line. Notice that this line results when the proportional rate of reinforcement exactly
matches the proportional rate of response. The matching law is an ideal representation of
choice behavior. The actual data from pigeon 231 approximate the matching relationship.
Herrnstein (1961b) also reported the results of two other pigeons that were well described
by the matching law.

Extension of the Matching Law

The Generality of Matching

This equality of the rates of both response and reinforcement is called a law of behavior,
because it describes how a variety of organisms choose among alternatives (de Villiers,
1977). Animals such as pigeons (Davison & Ferguson, 1978), wagtails (Houston, 1986),
cows (Matthews & Temple, 1979), and rats (Poling, 1978) have demonstrated matching
in choice situations. Interestingly, this same law applies to humans in a number of different
settings (Bradshaw & Szabadi, 1988; Pierce & Epling, 1983). Reinforcers have ranged from
food (Herrnstein, 1961b) to points that are subsequently exchanged for money (Bradshaw,
Ruddle, & Szabadi, 1981). Behavior has been as diverse as lever pressing by rats (Norman&
McSweeney, 1978) and conversation in humans (Conger&Killeen, 1974; Pierce, Epling,&
Greer, 1981). Environments in which matching has been observed have included T-mazes,
operant chambers, and open spaces with free-ranging flocks of birds (Baum, 1974a) as well
as discrete-trial and free operant choice by human groups (Madden, Peden, & Yamaguchi,
2002). Also, special education students have been found to spend time on math problems
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proportional to the relative rate of reinforcement (e.g.,Mace,Neef, Shade,&Mauro, 1994).
Thus, the matching law describes the distribution of individual (and group) behavior across
species, type of response, reinforcers, and settings.

Matching and Human Communication

An interesting test of the matching law was reported by Conger and Killeen (1974).
These researchers assessed human performance in a group-discussion situation. A group
was composed of three experimenters and one subject. The subject was not aware that the
other groupmembers were confederates in the experiment and was asked to discuss attitudes
toward drug abuse. One of the confederates prompted the subject to talk. The other two
confederates were assigned the role of an audience. Each listener reinforced the subject’s
talk with brief positive words or phrases when a hidden cue light came on. The cue lights
were scheduled so that the listeners gave different rates of reinforcement to the speaker.
When the results for several subjects were combined, the relative time spent talking to the
listener matched relative rate of agreement from the listener. These results suggest that the
matching law operates in everyday social interaction.

Departures from Matching

Of course, in the complex world of people and other animals, matching does not al-
ways occur (Baum, 1974b). This is because in complex environments, contingencies of
positive and negative reinforcement may interact, reinforcers differ in value, and histories
of reinforcement are not controlled. In addition, discrimination of alternative sources of
reinforcement may be weak or absent. For example, pretend you are talking to two people
after class at the local bar and grill. You have a crush on one of these two, and the other
you do not really care for. Both of these people attend to your conversation with equal rates
of social approval, eye contact, and commentary. You can see that even though the rates of
reinforcement are the same, you will probably spend more time talking to the person you
like best. Because this is a common occurrence in the nonlaboratory world, you might ask,
“What is the use of matching, and how can it be a law of behavior?”
The principle of matching is called a law, because it describes the regularity underlying

choice. Many scientific laws work in a similar fashion. Anyone who has an elementary
understanding of physics can tell you that objects of equal mass fall to the earth at the
same rate. Observation, however, tells you that a pound of feathers and a pound of rocks
do not fall at the same velocity. We can only see the lawful relations between mass and
rate of descent when other conditions are controlled. In a vacuum, a pound of feathers
and a pound of rocks fall at equal rates, and the law of gravity is observed. Similarly, with
appropriate laboratory control, the relative rate of response matches the relative rate of
reinforcement.

Matching Time on an Alternative

Behavioral choice can also bemeasured as time spent on an alternative (Baum&Rachlin,
1969; Brownstein & Pliskoff, 1968). Time spent is a useful measure of behavior when the
response is continuous, as in talking to another person. In the laboratory, rather than
measure the number of responses, the time spent on an alternative may be used to describe
the distribution of behavior. Thematching law can also be expressed in terms of the relative
time spent on an alternative. Equation 9.2 is similar to Equation 9.1 but states the matching
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relationship in terms of time:

Ta/(Ta + Tb) = Ra/(Ra + Rb). (9.2)

In this equation, the time spent on alternative A is represented by Ta, and the time spent
on alternative B is Tb. Again, Ra and Rb represent the respective rates of reinforcement for
these alternatives. The equation states that relative time spent on an alternative equals the
relative rate of reinforcement from that alternative. This extension of the matching law
to continuous responses such as standing in one place or looking at objects is important.
Most behavior outside of the laboratory does not occur as discrete responses. In this case,
Equation 9.2 may be used to describe choice and preference.

Matching on More Than Two Alternatives

Equations 9.1 and 9.2 state that relative behavior matches the relative rate of rein-
forcement. A consideration of either equation makes it evident that to change behav-
ior, the rate of reinforcement for the target response may be changed; alternatively, the
rate of reinforcement for other concurrent operants may be altered. Both of these proce-
dures change the relative rate of reinforcement for the specified behavior. Equation 9.3
represents the relative rate of response as a function of several alternative sources of
reinforcement:

Ba/(Ba + Bb + . . . Bn) = Ra/(Ra + Rb + . . . Rn). (9.3)

In the laboratory, most experiments are conducted with only two concurrent schedules of
reinforcement. However, the matching law also describes the situation in which an organ-
ism may choose among several sources of reinforcement (Davison &Hunter, 1976; Elsmore
& McBride, 1994; Miller & Loveland, 1974; Pliskoff & Brown, 1976). In Equation 9.3,
behavior allocated to alternative A (Ba) is expressed relative to the sum of all behavior
directed to the known alternatives (Ba + Bb + . . . Bn). Reinforcement provided by alter-
native A (Ra) is stated relative to all known sources of reinforcement (Ra + Rb + . . . Rn).
Again, notice that an equality of proportions (matching) is stated.

ADVANCED ISSUE: QUANTIFICATION OF BEHAVIORAL
CHOICE AND THE GENERALIZED MATCHING LAW

The proportion equations (Equations 9.1, 9.2, and 9.3) describe the distribution of be-
havior when alternatives differ only in rate of reinforcement. However, in complex
environments other factors also contribute to choice and preference.

Sources of Error in Matching Experiments

Suppose a pigeon has been trained to peck a yellow key for food on a single VI schedule.
This experience establishes the yellow key as a discriminative stimulus that controls
pecking. In a subsequent experiment, the animal is presented with concurrent VI VI
schedules of reinforcement. The left key is illuminatedwith a blue light, and the rightKey
is illuminated with a yellow one. Both of the variable-interval schedules are programmed
to deliver 30 reinforcers each hour. Although the programmed rates of reinforcement



Quantification of Behavioral Choice 247

are the same, the bird is likely to distribute more of its behavior to the yellow key.
In this case, stimulus control exerted by yellow is an additional variable that affects
choice.
In this example, the yellow key is a known source of experimental error that came from

the bird’s history of reinforcement. However, many unknown variables also affect choice
in a concurrent-operant setting. These factors arise from the biology and environmental
history of the organism. For example, sources of error may include different amounts
of effort for the responses, qualitative differences in reinforcement such as food versus
water, a history of punishment, a tendency to respond to the right alternative rather than
to the left alternative, and sensory capacities.

Matching of Ratios

To include these and other conditions within the matching law, it is useful to express
the law in terms of ratios rather than in terms of proportions. A simple algebraic trans-
formation of Equation 9.1 gives the matching law in terms of ratios:

1. Proportion equation: Ba/(Ba + Bb) = Ra/(Ra + Rb).
2. Cross-multiplying: Ba/(Ra + Rb) = Ra/(Ba + Bb).
3. Then: (Ba ∗Ra)+ (Ba ∗Rb) = (Ra ∗Ba)+ (Ra ∗Bb).
4. Canceling: Ba ∗Rb = Ra ∗Bb.
5. Ratio equation: Ba/Bb = Ra/Rb.

In the ratio equation, Ba and Bb represent the rate of response or the time spent on the
A and B alternatives. The terms Ra and Rb express the rates of reinforcement. When the
relative rate of response matches the relative rate of reinforcement, the ratio equation
is simply a restatement of the proportional form of the matching law.

The Power Law

A generalized form of the ratio equation may, however, be used to handle the situation
in which unknown factors influence the distribution of behavior. These factors produce
systematic departures from ideal matching but may be represented as two constants
(parameters) in the generalized matching equation, as suggested by Baum (1974b):

Ba/Bb = k(Ra/Rb)
a. (9.4)

In this form, thematching equation is represented as a power law in which the coefficient
k and the exponent a are values that represent two sources of error for a given experiment.
When these parameters are equal to 1, Equation 9.4 is the simple ratio form of the
matching law.

Bias

Baum suggested that variation in the value of k from 1 reflects preference caused by some
factor that has not been identified. For example, consider a pigeon placed in a chamber
in which two response keys are available. One of the keys has a small dark speck that is
not known to the experimenter. Recall that pigeons have excellent visual acuity and a
tendency to peck at stimuli that approximate a piece of grain. Given a choice between
the two keys, there will be a systematic response bias for the key with the spot on it.
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The presence of such bias is indicated by a value of k different from 1. Generally, bias
is some unknown asymmetry between the alternatives that affects preference over and
above the relative rates of reinforcement.

Sensitivity

When the exponent a takes on a value other than 1, another source of error is present.
A value of a greater than 1 indicates that changes in the response ratio (Ba/Bb) are
larger than changes in the ratio of reinforcement (Ra/Rb). Baum (1974b) called this
outcome overmatching, because the relative behavior increased faster than predicted
from the relative rate of reinforcement. Although overmatching has been observed, it
is not the most common result in behavioral-choice experiments. The typical outcome
is that the exponent a takes on a value less than 1 (Baum, 1979; Davison & McCarthy,
1988; Myers & Myers, 1977; Wearden & Burgess, 1982). This result is described as
undermatching. Undermatching refers to a situation in which changes in the response
ratio are less than changes in the reinforcement ratio.
One interpretation of undermatching is that changes in relative rates of reinforcement

are not well discriminated by the organism (Baum, 1974b). Sensitivity to the operating
schedules is adequate when the value of a is close to 1. An organism may not detect
subtle changes in the schedules, and its distribution of behavior lags behind the current
distribution of reinforcement. This slower change in the distribution of behavior is
reflected by a value of a less than 1. For example, if a pigeon is exposed to concurrentVIVI
schedules without a COD procedure, then the likely outcome is that the bird will rapidly
and repeatedly switch between alternatives. This rapid alternation usually results in the
pigeon being less sensitive to changes in the reinforcement ratio, and undermatching
is the outcome. However, a COD may be used to prevent the superstitious switching
and increase sensitivity to the rates of reinforcement on the alternatives. The COD is
therefore a procedure that reduces undermatching, and this is reflected by values of a
that are close to 1.
Although problems of discrimination or sensitivity may account for deviations of a

from 1, some researchers believe that undermatching is so common that it should be
regarded as an accurate description of choice and preference (Davison, 1981). If this
position is correct, then matching is not the lawful process underlying choice. Most
behavior analysts have not adopted this position and view matching as a fundamental
process. Nonetheless, the origin of undermatching is currently a focus of debate and is
not resolved at this time (Allen, 1981; Baum, 1979; Davison & Jenkins, 1985; Prelec,
1984; Wearden, 1983).

Estimating Bias and Sensitivity

Dr. William Baum (1974b) formulated the generalized matching law, as shown in Equa-
tion 9.4. In the same article, he suggested that Equation 9.4 could be represented as
a straight line when expressed in logarithmic form. In this form, it is relatively easy to
portray and interpret deviations frommatching (i.e., bias and sensitivity) on a line graph.
Baum (Fig. 9.7) suggested that in linear form, the value of the slope of the line measured
sensitivity to the reinforcement schedules, whereas the intercept reflected the amount of
bias.
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FIG. 9.7. William Baum. Reprinted with permission.

Algebra for a Straight Line

The algebraic equation for a straight line is

Y = M+N(X)

In this equation, N is the slope and M is the intercept. The value of X (horizontal axis)
is varied, and this changes the value of Y (vertical axis). Assume that X takes on values
of 1 through 10, M = 0, and N = 2. When X is 1, the simple algebraic equation is Y =
0 + 2 (1) or Y = 2. The equation can be solved for the other nine values of X and the
(X,Y) pairs plotted on a graph. Figure 9.8 is a plot of the (X,Y) pairs over the range of
the X values. The rate at which the line rises, or the slope of the line, is equal to the

FIG. 9.8. A plot of the algebraic equation for

a straight line. Slope is set at 2.0, and intercept

is zero.



250 9. Choice andPreference

value of N and has a value of 2 in this example. The intercept M is zero in this case and
is the point at which the line crosses the Y coordinate.

A Log-Linear Matching Equation

To write the matching law as a straight line, Baum suggested that Equation 9.4 be
expressed in the logarithmic form of Equation 9.5:

log(Ba/Bb) = log k+ [a ∗ log(Ra/Rb)]. (9.5)

Notice that in this form, log(Ba/Bb) is the same as the Y value in the algebraic equation
for a straight line. Similarly, log(Ra/Rb) is the same as the X term. The value a is the
same as N and is the slope of the line. Finally, log k is the intercept, as is the M term in
the algebraic equation.

The Case of Matching

Figure 9.9 shows the application of Equation 9.5 to idealized experimental data. The
first and second columns give the number of reinforcers an hour delivered on the A and
B alternatives. Notice that the rate of reinforcement on alternative B is held constant
at 5 per hour, whereas the rate of reinforcement for alternative A is varied from 5 to
600 reinforcers. The relative rate of reinforcement is shown in column 3, expressed
as a ratio (i.e., Ra/Rb). For example, the first ratio for the data labeled “matching” is
5/5 = 1, and the other ratios may be obtained in a similar manner. The fourth column
is the logarithm of the ratio values. Logarithms are obtained from a calculator and are
defined as the exponent of base 10 that yields the original number. For example, 2.0 is
the logarithm of 100, because 10 raised to the second power is 100. Similarly, in Fig. 9.9

FIG. 9.9. Application of log-linear matching equation (Equation 9.5) to idealized experimental

data. Shown are reinforcements per hour (Rft/hr) for alternatives A and B, the ratio of the rein-

forcement rates (Ra/Rb), and the log ratio of the reinforcement rates (X values). The log ratios of the

response rates (Y values) were obtained by setting the slope and intercept to values that produce

matching, undermatching, or bias.
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the logarithm of the ratio 120 is 2.08, because 10 to the 2.08 power is equal to the original
120 value.
Notice that logarithms are simply a transformation of scale of the original numbers.

Such a transformation is suggested, because logarithms of ratios plot as a straight line on
X-Y coordinates, whereas the original ratios may not be linear. Actual experiments in-
volve both positive and negative logarithms, because ratios may be less than 1. For sim-
plicity, the constructed examples in Fig. 9.9 only use values that yield positive logarithms.
Columns 5 and 6 provide values for the slope and intercept for the log–ratio equation.

When relative rate of response is assumed to match (or equal) relative rate of reinforce-
ment, the slope (a) assumes a value of 1.00, and the value of the intercept (log k) is zero.
With slope and intercept so defined, the values of Y or log(Ba/Bb) may be obtained from
the values of X or log(Ra/Rb), by solving Equation 9.5. For example, the first Y value
of 0.00 for the final column is obtained by substituting the appropriate values into the
log-ratio equation, log(Ba/Bb) = 0.00 + [1.00 * (0.00)]. The second value of Y is 0.78,
or log(Ba/Bb) = 0.00 + [1.00 * (0.78)], and so on.
Figure 9.10(a) plots the “matching” data. The values of X or log(Ra/Rb) were set for this

idealized experiment, and Y or log(Ba/Bb) values were obtained by solving Equation 9.5

FIG. 9.10. (A) An X-Y plot of the data for “Matching” from Fig. 9.9. The value of the slope is set at

1 (a = 1), and the intercept is set at zero (log k = 0). The matching line means that a unit increase

in relative rate of reinforcement [log(Ra /Rb)] produces a unit increase in relative rate of response

[log(Ba /Bb)]. (B) An X-Y plot of the data for “Undermatching” from Fig. 9.9. The value of the slope is

set at less than 1 (a = 0.5), and the intercept is set at zero (log k = 0). Undermatching with a slope

of 0.5 means that a unit increase in relative rate of reinforcement [log(Ra/Rb)] produces a half-unit

increase in relative rate of response [log(Ba/Bb)]. (C) An X-Y plot of the data for “Bias” from Fig. 9.9.

The value of the slope is set at 1 (a = 1), and the intercept is more than zero (log k = 1.5). A bias

of this amount means that the new X-Y plot is deflected 1.5 units from the matching line.
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when a = 1 and log k = 0. Notice that the plot is a straight line that rises at 45◦. The
rate of rise in the line is equal to the value of the slope (i.e., a = 1). This value means
that a unit change in X (i.e., from 0 to 1) results in an equivalent change in the value
of Y. With the intercept (log k) set at 0, the line passes through the origin (X = 0,
Y = 0). The result is a matching line in which log ratio of responses equals log ratio of
reinforcement.

The Case of Undermatching

The data of Fig. 9.9 labeled “undermatching” represent the same idealized experiment.
The value of the intercept remains the same (log k= 0); however, the slope now takes on
a value less than 1 (a = 0.5). Based on Equation 9.5, this change in slope results in new
values of Y or log(Ba/Bb). Figure 9.10(b) is a graph of the line resulting from the change
in slope. When compared to the matching line (a = 1), the new line rises at a slower
rate (a = 0.5). This situation is known as undermatching and implies that the subject
gives less relative behavior to alternative A [log(Ba/Bb)] than expected on the basis
of relative rate of reinforcement [log(Ra/Rb)]. For example, if log-ratio reinforcement
changes from 0 to 1, the log ratio of behavior will change only from 0 to 0.5. This
suggests poor discrimination by the subject of the operating schedules of reinforcement
(i.e., sensitivity).

The Case of Bias

It is also possible to have a systematic bias for one of the alternatives. For example, a
right-handed personmay prefer to press a key more on the right side than on the left side.
This tendency to respond to the right side may occur even though both keys schedule
equal rates of reinforcement. Recall that response bias refers to any systematic preference
for one alternative that is not explained by the relative rates of reinforcement. In terms
of the idealized experiment, the data labeled “bias” in Fig. 9.9 show that the slope of the
line is 1 (matching), but the intercept (log k) now assumes a value of 1.5 rather than
zero. A plot of the X or log(Ra/Rb) and Y or log(Ba/Bb) values in Fig. 9.10(c) reveals a
line that is systematically deflected 1.5 units from the matching line.

Experiments and Log-Linear Estimates

Setting the Values of the Independent Variable

In actual experiments on choice and preference, the values of the slope and intercept
are not known until the experiment is conducted. The experimenter sets the values of the
independent variable, log(Ra/Rb), by programming different schedules of reinforcement
on the alternatives. For example, one alternativemaybeVI30 s and theotherVI 60 s.The
VI 30-s schedule is set to pay off at 120 reinforcers per hour, and the VI 60-s schedule is
set to pay off at 60 reinforcers each hour. The relative rate of reinforcement is expressed as
the ratio 120/60= 2. To describe the results in terms of Equation 9.5, the reinforcement
ratio, 2, is transformed to a logarithm, using a calculator with logarithmic functions.
Experiments are designed to span a reasonable range of log-ratio reinforcement values.
The minimum number of log-ratio reinforcement values is 3, but most experiments
program more than three values of the independent variable.
Each experimental subject is exposed to different pairs of concurrent schedules of

reinforcement. The subject is maintained on these schedules until the rates of



Quantification of Behavioral Choice 253

response are stable, according to preset criteria. At this point, the relative rates of re-
sponse are calculated (Ba/Bb) and transformed to logarithms. For example, a subject on
concurrentVI 30-sVI 60-s schedulemay generate 1,000 responses per hour on theVI 30-s
alternative and 500 on the VI 60-s schedule. Thus, the response ratio is 1,000/500 =2,
or 2 to 1. The response ratio, 2, is transformed to a logarithm. For each value of
log(Ra/Rb), the observed value the dependent variable log(Ba/Bb) is plotted on X,Y
coordinates.
To illustrate the application of Equation 9.5, consider an experiment conducted in

1973 byWhite and Davison. In this experiment, several pigeons were exposed to 12 sets
of concurrent schedules. Each pair of schedules programmed a different reinforcement
ratio. The pigeons were maintained on the schedules until key pecking was stable from
day to day. The data for pigeon 22 are plotted in Fig. 9.11(a) on logarithmic coordinates.
Plotting the reinforcement and response ratios on logarithmic coordinates is the same

FIG. 9.11. (A) Reinforcement and response ratios for pigeon 22 plotted on logarithmic coordi-

nates, based on Table 1 from White and Davison (1973). Note. From “Performance in Concurrent

Fixed-Interval Schedules,” by A. J. white and M. C. Davison, 1973, Journal of the Experimental

Analysis of Behavior, 19, pp. 147–153. Copyright 1973 by the Society for the Experimental Anal-

ysis of Behavior, Inc. (B) The line of best fit for the data of pigeon 22. Note. Also from White and

Davison, 1973. Copyright 1973 by the Society for the Experimental Analysis of Behavior, Inc.

author generated figures.
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as plotting the log ratios on ordinary graph paper. Notice that actual results are not as
orderly as the data of the idealized experiment. This is because errors in measurement,
inconsistencies of procedure, and random events operate to affect response ratios in
actual experiments. The results appear to move upward to the right in a linear manner,
but it is not possible to draw a simple line through the plot.

Estimates of Slope and Intercept

To find the line that best fits the results, a statistical technique (i.e., least-squares
regression) is used to estimate values for the slope and intercept of Equation 9.5. The
idea is to select slope and intercept values that minimize the errors in prediction. For a
given value of the reinforcement ratio (x-axis), an error is the difference between the
response-ratio value on the line (called the predicted value) and the actual or observed
response ratio.
The mathematics that underlie this statistical technique are complicated and beyond

the scope of this book. However, most personal computers have programs that will do the
calculations for you. For example, you can use a program like Microsoft Excel and a PC
computer to obtain the best-fitting line, using linear regression analysis. The estimate of
slope was a= 0.77, indicating that pigeon 22 undermatched to the reinforcement ratios.
The estimate of the intercept was zero (log k= 0), indicating that there was no response
bias. With these estimates of slope and intercept, Equation 9.5 may be used to draw the
best-fitting line.
In Figure 9.11(b), the line of best fit has been drawn. You can obtain the line of best

fit by substituting values for log(Ra/Rb) and finding the predicted log(Ba/Bb) values. You
only need to find two points on the X,Y coordinates to draw the line. Notice that the
data and best-fit line are plotted on a graph with logarithmic coordinates. Because there
was no bias (log k = 0), the line must pass through the point X = 1, Y = 1 when Ra/Rb
and Ba/Bb values are plotted on logarithmic paper.
As a final point, you may be interested in how well the matching equation fit the

results of pigeon 22. One measure of accuracy is called explained variance. This measure
varies between 0 and 1 in value. When the explained variance is 0, it is not possible to
predict the response ratios from the reinforcement ratios. When the explained variance
is 1, there is perfect prediction from the reinforcement ratios to the response ratios. In
this instance, the explained variance is 0.92, indicating 92% accuracy. The log-linear
matching equation is a good description of the pigeon’s behavior on concurrent schedules
of reinforcement.

Implications of the Matching Law

Thematching law has practical implications. A few researchers have shown that thematch-
ing equations are useful in applied settings (see Borrero & Vollmer, 2002; Epling & Pierce,
1983; McDowell, 1981, 1982, 1988; Myerson & Hale, 1984; Plaud, 1992, for a review). For
example, a common problemwith children is that they do not obey their parents (Patterson,
1976). In some cases, this problem becomes severe, and parents complain that their children
are out of control. When this happens, the parents may seek professional help.
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Matching and Child Compliance

A traditional applied behavior analysis of this problem involves objectively identifying the
target responses, finding effective reinforcers, and then establishing contingencies between
behavior and consequences. However, the matching equations suggest that other sources
of reinforcement should be taken into account.

Child’s Compliance to Mother

(Compliance to Mother)+ (Compliance to Others)
=

Reinforcement from Mother

(Sr+Mother)+ (Sr+Others)

For example, according to the proportion equation, to change the child’s rate of compli-
ance to the mother, the applied analyst should consider the father and siblings as additional
sources of reinforcement. The rate of compliance with the requests of one parent may be
low, because this behavior is concurrently reinforced at a high rate by other family members.
For example, if maternal reinforcement (e.g., praise, approval, and attention) is given at
a lower rate than that of the father, then modification of the rate of maternal attention
for compliant behavior will increase obedience only if the father’s rate of reinforcement
remains the same. Frequently, however, parents compete for their children’s behavior, and
a shift away from the father can easily lead to an increase in the rate of social reinforcement
from him. An increase in the father’s attention and approval could further decrease the
frequency of child compliance toward the mother, even though she has increased her rate
of reinforcement. This analysis reflects the typical two-key concurrent paradigm. The child
responds to, and switches among, alternative schedules of reinforcement set up by parents
and siblings.

Matching, Modification, and Reinforcement Schedules

The matching law has implications for the kind of reinforcement schedules that should
be used for behavior modification. Myerson and Hale (1984) discussed the applied set-
ting in terms of concurrent schedules of reinforcement. People emit a variety of responses,
many of which are maintained by concurrently available sources of reinforcement. Some of
these responses may be socially appropriate, whereas others are considered undesirable. In
a classroom, appropriate behavior for students includes working on assignments, following
instructions, and attending to the teacher. In contrast, yelling and screaming, talking out
of turn, and throwing paper airplanes are usually viewed as undesirable. All of these activ-
ities, appropriate or inappropriate, are presumably maintained by teacher attention, peer
approval, sensory stimulation, and other sources of reinforcement. However, the schedules
of reinforcement-maintaining behavior in complex settings like a classroom are usually not
known. When the objective is to increase a specific operant and the competing schedules
are unknown, Myerson and Hale (1984) recommend the use of VI schedules to reinforce
target behavior.
To simplify the analysis, we will treat all on-task operants as part of the more general

class of appropriate behavior and off-task operants as inappropriate behavior. Assume that
the reinforcement for inappropriate behavior is delivered on a ratio schedule. To increase
desired behavior by a student, ratio contingencies may be arranged by the teacher. This
means that the situation is analyzed as a concurrent ratio schedule. Recall that on concurrent
ratio schedules, exclusive preference develops for the alternative with the higher rate of
reinforcement (Herrnstein& Loveland, 1975). Ratio schedules are in effect when a teacher
implements a grading system based on the number of correct solutions for assignments.
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The teacher’s intervention will increase the students’ on-task behavior, only if the rate of
reinforcement by the teacher is higher than the ratio schedule controlling inappropriate
behavior. Basically, an intervention is either completely successful or a total failure when
ratio schedules are used to modify behavior. In contrast, interval schedules of reinforcement
will always redirect behavior to the desired alternative, although such a schedule may not
completely eliminate inappropriate responding.
When behavior is maintained by interval contingencies, interval schedules remain the

most desirable method for behavior change. Myerson and Hale (1984) used the matching
equations to show that behavior-change techniques based on interval schedules are more
effective than ratio interventions. They stated that “if the behavior analyst offers a VI
schedule of reinforcement for competing responses two times as rich as the VI schedule for
inappropriate behavior, the result will be the same as would be obtained with a VR schedule
three times as rich as the schedule for inappropriate behavior” (pp. 373–374). Generally,
behavior change will be more predictable and successful if interval schedules are used to
reinforce appropriate behavior.

Additional Aspects of Choice and Preference

Optimal Foraging, Matching, and Melioration

One of the fundamental problems of evolutionary biology and behavioral ecology concerns
the concept of “optimal foraging” of animals (Krebs&Davies, 1978). Foraging involves prey
selection where prey can be either animal or vegetable. Thus, a cow taking an occasional
mouthful of grass throughout a field and a redshank wading in the mud and probing with
its beak for an occasional worm are examples of foraging behavior. Because the function of
foraging is food, foraging can be viewed as operant behavior regulated by food reinforcement.
The natural contingencies of foraging present animals with alternative sources of food
called patches. Food patches provide items at various rates and in this sense are similar to
concurrent schedules of reinforcement arranged in the laboratory.
Optimal foraging is said to occur when animals obtain the highest overall rate of rein-

forcement from their foraging. That is, over time organisms are expected to select between
patches so as to optimize (obtain the most possible of) their food resources. In this view,
animals are like organic computers comparing their behavioral distributions with over-
all outcomes and stabilizing on a response distribution that maximizes the overall rate of
reinforcement.
In contrast to the optimal foraging hypothesis, Herrnstein (1982) proposed a process of

melioration (doing the best at the moment). Organisms, he argued, are sensitive to fluc-
tuations in the momentary rates of reinforcement rather than to long-term changes in the
overall rates of reinforcement. That is, an organism remains on one schedule until the local
rates of reinforcement decline relative to that offered by a second schedule. Herrnstein
(1997, pp. 74–99) showed that the steady-state outcome of the process of melioration is
the matching law where the relative rate of response matches the relative rate of reinforce-
ment. Thus, in a foraging situation involving two patches, Herrnstein’s melioration analysis
predicts matching of the distributions of behavior and reinforcement (e.g., Herrnstein &
Prelec, 1997). Optimal foraging theory, on the other hand, predicts maximization of the
overall rate of reinforcement.
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It is not possible to examine all the evidence for melioration, matching, and maximizing
in this chapter, but Herrnstein (1982) has argued that melioration and matching are the
basic processes of choice. That is, when melioration and matching are tested in choice sit-
uations that distinguish matching from maximizing, matching theory has usually predicted
the actual distributions of the behavior.
One example of the application of matching theory to natural foraging is reported by

Baum (1974a) for a flock of free-ranging wild pigeons. The subjects were 20 pigeons that
lived in a wooden frame house in Cambridge, Massachusetts. An opening allowed them to
freely enter and leave the attic of the house.Anoperant apparatuswith a platformwas placed
in the living space opposite to the opening to the outside. The front panel of the apparatus
contained three translucent response keys, and when available, an opening allowed access
to a hopper of mixed grain. Pigeons were autoshaped to peck to the center key, and following
this training, a perch replaced the platform so that only one pigeon at a time could operate
the keys to obtain food. Pigeons were now shaped to peck the illuminated center key on aVI
30-s schedule of food reinforcement. When a stable performance was observed, the center
key was no longer illuminated or operative, and the two side keys became active. Responses
to the illuminated side keys were reinforced on two concurrent VI VI schedules. Relative
rates of reinforcement on the two keys were varied, and the relative rate of response was
measured.
Although only one bird at a time could respond on the concurrent schedules of re-

inforcement, Baum (1974b) treated the aggregate pecks of the group as the dependent
measure. When the group of 20 pigeons chose between the two side keys, each of which
occasionally produced food, the ratio of pecks to these keys approximately equaled the ratio
of grain presentations obtained from them. That is, the aggregate behavior of the flock of
20 pigeons was in accord with the generalized matching equation (see this chapter). This
research suggests that the matching law applies to the behavior of wild pigeons in natural
environments. Generally, principles of choice based on laboratory experiments can predict
the foraging behavior of animals in ecologically valid settings.

Behavioral Economics, Choice, and Addiction

Choice and concurrent schedules of reinforcement may be analyzed from a microeconomic
point of view (Rachlin, Green, Kagel, & Battalio, 1976). Behavioral economics involves
the use of basic economic concepts and principles (law of demand, price, substitutability,
and so on) to analyze, predict, and control behavior in choice situations. One of the more
interesting areas of behavioral economics concerns laboratory experiments that allow ani-
mals to work for drugs such as alcohol, heroin, and cocaine. Thus, Nader and Woolverton
(1992) showed that monkeys’ choice of cocaine over food was a function of drug dose, but
that choosing cocaine decreased as the price (number of responses per infusion) increased.
That is, the reinforcing effects of the drug increased with dose, but these effects were modi-
fied by price, an economic factor. In another experiment, Carroll, Lac, and Nygaard (1989)
examined the effects of a substitute commodity on the use of cocaine. Rats nearly doubled
their administration of cocaine when water was the other option than when the option
was a sweet solution. These effects were not found in a control group that self-administered
an inert saline solution, suggesting that (a) cocaine infusion functioned as reinforcement
for self-administration and (b) that the sweet solution substituted for cocaine. Again, the
reinforcing effects of the drug were altered by an economic factor, in this case, the presence
of a substitute commodity (see Carroll, 1993, for similar effects with monkeys and the drug
PCP).
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The concept of substitute commodities (reinforcers) may be useful in understanding the
treatment of heroin addicts with methadone. From an economic perspective, methadone
is a partial substitute for heroin, because it provides only some of the reinforcing effects of
the actual drug. Also, methadone is administered in a clinical setting that is less reinforcing
than the social context in which heroin is often used (Hursh, 1991). Based on this analysis,
it is unlikely that the availability of methadone treatment will, by itself, eliminate the use
of heroin.
To reduce drug abuse, Vuchinich (1999) suggests a multifaceted approach that (a) in-

creases the cost of using drugs by law enforcement that reduces the supply (i.e., price goes
up); (b) provides easy access to other nondrug activities (e.g., sports, musical entertainment,
etc.) and arranges reinforcement from family, friends, and work for staying drug free; and (c)
provides reinforcement for nondrug behavior promptly, as delayed reinforcement is ineffec-
tive. These principles can be applied to many behavior problems, including smoking, use
of alcohol, and compulsive gambling (Bickel & Vuchinich, 2000). It is no longer necessary
or sensible to treat people as if they had an underlying illness or disease (e.g., alcoholism).
Behavioral economics and learning principles offer direct interventions to modify excessive
or addictive behavior.

Self-Control and Preference Reversal

Students often face the choice of going out to party or staying home and “hitting the books.”
Often, when given the options, students pick the immediate reward of partying with friends
over the long-term benefits of studying, learning the subject matter, and high grades. When
a person (or other animal) selects the smaller, immediate payoff over the larger, delayed
benefits, we may say that he or she shows impulsive behavior. On the other hand, a person
who chooses the larger, delayed reward while rejecting the smaller, immediate payoff is said
to show self-controlled behavior. In terms of a student’s choices to either party or study,
choosing to party with friends is impulsive behavior, whereas choosing to stay home and
study is self-controlled behavior.
One of the interesting things about self-control situations is that our preferences change

over time. That is, we may value studying over partying a week before the party but value
partying when the night of the party arrives. Howard Rachlin (1970, 1974) and George
Ainslie (1975) independently suggested that these preference reversals could be analyzed as
changes in reinforcement effectiveness with increasing delay. TheAinslie–Rachlin princi-
ple is that reinforcement value decreases as the delay between making a choice and obtaining the
reinforcer increases.
The value of learning and high grades on the night of the party (choice point) is lower

than having fun with friends, because the payoffs for studying are delayed until the end of
term. But if wemove back in time from the choice point to a week before the party, the value
of studying relative to partying reverses. That is, adding delay to each reinforcement option
before a choice is made reverses the value of the alternative reinforcers. More generally, at
some time removed frommaking a choice, the value of the smaller, immediate reinforcer will
be less than the value of the larger, delayed reward, indicating a preference reversal. When
preference reversal occurs, people (and other animals) will make a commitment response
to forego the smaller, immediate reward and lock themselves into the larger, delayed payoff
(see chap. 13 and self-control). The commitment response is some behavior emitted at
a time prior to the choice point that eliminates or reduces the probability of impulsive
behavior. A student who invites a classmate over to study on Friday night (commitment
response) ensures that she will “hit the books” and give up partying when the choice
arrives.



Additional Aspects of Choice and Preference 259

Preference reversal and commitment occurs over extended periods in humans and
involves many complexities (e.g., Green, Fry, & Myerson, 1994; Logue, Pena-Correal,
Rodriguez,&Kabela, 1986). In animals, delays of reinforcement by a few seconds can change
the value of the options, instill commitment, and ensure self-control over impulsiveness.
As an example of preference reversal, consider an experiment by Green, Fisher, Perlow,
and Sherman (1981), where pigeons responded on two schedules of reinforcement, using a
trials procedure. The birds were given numerous trials each day. On each trial a bird made
its choice by pecking one of two keys. A single peck at the red key resulted in a 2-s access to
grain, whereas a peck at the green key delivered a 6-s access to food. The intriguing aspect of
the experiment involved adding a brief delay between a peck and the delivery of food.Under
one condition, there was a 2-s delay for the 2-s reinforcer (red key) and a 6-s delay for a 6-s
access to food (green key). The data indicated that birds were impulsive, choosing the 2-s
reinforcer on nearly every trial and losing about two thirds of their potential access to food.
In another procedure, 18 additional s were added to the delays for each key so that the

delays were now 20 s for the 2-s reinforcer and 24 s for the 6-s access to food. When the
birds were required to choose far in advance, they pecked the green key that delivered a 6-s
access to food onmore than 80%of the trials. In other words, the pigeons showed preference
reversal and self-control when both reinforcers were farther away.
Other research by Ainslie (1974) and by Rachlin and Green (1972) shows that pigeons

can learn to make a commitment response, thereby reducing the probability of impulsive
behavior.To illustrate, in theRachlin andGreen (1972) experiment, pigeonswere presented
with two keys. If the birds pecked the red key, they received a 2-s access to food (small,
immediate reinforcer). Pecking the green key, on the other hand, resulted in a 4-s access
to food, but after a 4-s delay (large, delayed reinforcer). At a time prior to the choice
between red and green options, the birds could make a commitment response. Both keys
were illuminated white during the commitment phase. Pecking the left key produced a 10-s
blackout that was followed by the choice between the reinforcement options (green and
red keys). Pecks to the right key also produced a 10-s blackout, but only the large, delayed
reinforcer was subsequently presented (no choice, only green key available). Thus, the birds
could commit themselves to obtaining the larger reinforcer by pecking the right key.
Rachlin and Green calculated (using a matching equation for amounts and delays) that

the birds would value the larger reward about 1.5 times more than they valued the smaller
one when the 10-s delay (blackout) preceded the choice between reinforcement options
(red and green keys). Based on the preference for the larger reward at this point, the birds
should peck the right key and eliminate their subsequent choice between red and green
options. (Only the green key becomes available.) That is, the birds were predicted to
make a commitment. At the choice point, however, the smaller reward would be infinitely
preferable to the larger reinforcer. Given the preference for the smaller reinforcer at the
choice point, the birds were expected to behave impulsively, pecking the red option (small,
immediate reinforcer).
The behavior of the pigeons was in accord with predictions.When pigeons had to choose

between the red and the green options, they always pecked the red key and received a 2-s
access to food (small, immediate reinforcer).When the choice was delayed by 10 s, the birds
pecked the right key about 65%of the time, thereby often eliminating subsequent choice and
receiving the large reinforcer. The experiment therefore showed impulsiveness, preference
reversal, and commitment by pigeons in a self-control situation. Generally, animal research
supports the Ainslie–Rachlin principle and suggests that basic learning processes are part
of self-control and impulsivenss in humans (see Rachlin, 2000, on self-control and a new
model based on behavior principles and economics; also see Rachlin & Laibson, 1997, for
papers by Richard Herrnstein on the matching law and self-control).
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Matching on a Single Schedule of Reinforcement

Thematching law suggests that operant behavior is determined by the rate of reinforcement
for one alternative relative to all other known sources of reinforcement. Even in situations
in which a contingency exists between a single response and a reinforcement schedule,
organisms may have several reinforced alternatives that are unknown to the researcher.
Also, many of the activities that produce reinforcement are beyond experimental control.
A rat that is lever pressing for food may gain additional reinforcement from exploring the
operant chamber, scratching itself, and so on. In a similar fashion, rather than work for
teacher attention a pupil may look out the window, talk to a friend, or even daydream.
Thus, even in a single-operant setting, multiple sources of reinforcement are operating.
Richard Herrnstein (1970, 1974) argued this point and suggested that all operant behavior
must be understood as behavior emitted in the context of other alternative sources of rein-
forcement. Based on these ideas, Herrnstein proposed a matching equation that describes
the absolute rate of response on a single schedule of reinforcement. This mathematical
formulation is called the quantitative law of effect. The law states that the absolute rate of
response on a schedule of reinforcement is a hyperbolic function of rate of reinforcement on the
schedule relative to the total rate of reinforcement, both scheduled and extraneous reinforce-
ment. That is, as the rate of reinforcement on the schedule increases, the rate of response
also rises, but eventually further increases in the rate of reinforcement produce less and less
of an increase in the rate of response (hyperbolic). Also, the rise in the rate of response
with an increasing rate of reinforcement is modified by extraneous sources of reinforce-
ment. The greater the extraneous reinforcement the less the increase in rate of response
with increasing rate of scheduled reinforcement. One implication is that control of behav-
ior by a schedule of reinforcement is reduced as the sources of extraneous reinforcement
increase.
Extraneous sources of reinforcement include any unknown contingencies that support

the behavior of the organism. For example, a rat that is pressing a lever for food on a
particular schedule of reinforcement could receive extraneous reinforcement for scratching,
sniffing, and numerous other behaviors. The rate of response for food will be a function
of both the programmed schedule as well as the extraneous schedules controlling other
behavior. In humans, a student’s mathematical performance will be both a function of the
schedule of correct solutions as well as an extraneous reinforcement for other behavior
from classmates or teachers, internal neurochemical processes, and changes to the physical/
chemical environment (e.g., smell of food drifting from the cafeteria). A more complete
presentation of Herrnstein’s matching equation for a single schedule of reinforcement is
found in the following section on this topic.

ADVANCED ISSUE: A MATCHING EQUATION FOR A
SINGLE SCHEDULE OF REINFORCEMENT

Herrnstein (1970, 1974) proposed a matching equation to describe responding on a
single schedule of reinforcement. The equation relates absolute (rather than relative)
response and reinforcement rates, using alternative sources of reinforcement as the con-
text. Because the equation is expressed in absolute rates, it is usually considered a more
fundamental expression of matching theory. Herrnstein’s equation (the quantitative law
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of effect) may be derived from a restatement of the proportional matching law:

Ba/(Ba + Be) = Ra/(Ra + Re).

The difference between this equation and the proportional equation (Equation 9.1)
is that Be refers to all behavior directed to extraneous sources of reinforcement, and
Re represents these sources. For example, lever pressing is the specified operant (Ba)
that produces food at some rate of reinforcement (Ra). Notice that pressing the lever is
expressed relative to the other activity of the organism (Be). This activity is reinforced
by events that are not under experimental control (Re). A rat may obtain reinforcement
from grooming, even though this is not prescribed by the experimental procedures. Many
other activities result in extraneous sources of reinforcement.
To solve the equation for the absolute rate of response (Ba), it is important to recognize

that Ba + Be is equal to the total behavioral output for a given situation. Because Ba
represents lever pressing and Be represents all other activity, the sum must equal all the
behavior of the animal in the experimental setting. It is convenient to express this sum
as the value k or the total behavioral output. The quantity k may now be substituted into
the preceding equation:

Ba/k = Ra/(Ra + Re).

When each side of the equation is multiplied by k, the absolute response rate (Ba) is
expressed as

Ba = k(Ra)/(Ra + Re). (9.6)

This kind of equation produces a hyperbolic line that rises to asymptote on X,Y coor-
dinates. Herrnstein’s equation therefore states that the absolute rate of response (Ba)
is a hyperbolic function of the scheduled rate of reinforcement (Ra) and all extraneous
sources of reinforcement (Re). The constant k, or the total behavioral output, sets the
upper limit on the hyperbolic curve (McDowell, 1986).

Extraneous Sources of Reinforcement

The constant Re represents extraneous sources of reinforcement and modifies the impact
of the scheduled rate of reinforcement. In Equation 9.6, extraneous reinforcement (Re)
is added to the programmed rate of reinforcement (Ra), and Ra is divided by this sum.
As the value of Re increases, the impact of Ra must decline. This means that, for a given
schedule of reinforcement, the absolute rate of response (Ba) will be low when Re is large
and high when Re is small.
Pretend that you volunteer to participate in an experiment that involves dialing for

dollars. Your task is to dial phone numbers that result in either an answer or a busy signal.
When a call is completed, a message says, “Congratulations, you have just won a dollar,”
and simultaneously a coinmachine dispensesmoney to you. The experiment is controlled
by a computer that schedules the rate of reinforcement for dialing.Reinforcement consists
of the message and the dollar. Experimental sessions are held after classes for 1 hr, 5 days
a week, for 6 months. During this period, the scheduled payoff for dialing the phone is
varied to produce different rates of reinforcement. Sometimes the rate of reinforcement
is high (e.g., $120 per hour), and during other sessions it is low (e.g., $2 per hour). A
given rate of reinforcement is maintained until dialing occurs at a stable rate.
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FIG. 9.12. Two idealized plots of Equation 9.6, Herrnstein’s hyperbola. Both curves approach

the asymptote k, which represents the total behavioral output for the experiment. The value of Re,

or extraneous reinforcement, is large for one curve and is small for the other.

Figure 9.12 shows the possible results of this experiment in terms of Equation 9.6. The
number of phone calls per hour is plotted against the number of dollars earned each hour.
Herrnstein’s hyperbolic equation suggests that your rate of dialing will increase rapidly
as the rate of reinforcement goes up. As the rate of reinforcement becomes larger and
larger, the increase in the rate of response becomes less and less, and the curve flattens
out.
Two hyperbolic curves are presented in Fig. 9.12. Both curves rise toward (but never

meet) the line k, which represents all your activity in the experimental setting. These
curves depict the effects of high versus low values of Re or extraneous reinforcement. A
comparison of the curves indicates that your rate of dialing may be high or low for the
same rate of reinforcement (Ra). The impact of the scheduled rate of reinforcement on
the response rate is modified by the value of Re in the situation.
In a rich environment, Re is large, and monetary payments produce a relatively low

response rate. When the environment is lean, Re has a small value, and the dollars
produce a higher rate of dialing. For example, if you were dialing in a laboratory cubicle
(small Re), your rate of calls should be higher than if you were dialing in a spacious, well-
decorated room with a picturesque view of the countryside (large Re). Add a television
set to the room, and your dialing would be even lower. Thus, your behavior in the dialing-
for-dollars experiment varies in accord with the scheduled payoffs and the background
or context, as represented by the Re value.

Experimental Evidence and the Quantitative Law of Effect

The quantitative law of effect (Equation 9.6) has been analyzed in laboratory experiments.
In an early investigation, Catania and Reynolds (1968) conducted an exhaustive study
of six pigeons that pecked a key for food on different variable-interval (VI) schedules.
The rate of reinforcement ranged from 8 to 300 food presentations each hour. Herrnstein
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FIG. 9.13. Rate of response as a function of rate of food reinforcement for six pigeons on single

VI schedules. The k and Revalues for each fitted curve are shown. Reprinted from Fig. 8 of “On

the Law of Effect,” by R. J. Herrnstein, 1970, Journal of the Experimental Analysis of Behavior, 21,

pp. 243–266; which in turn is based on data from Catania and Reynolds, 1968; copyright 1970

by the Society for the Experimental Analysis of Behavior, Inc.

(1970), in his classic article on the law of effect, replotted the data from the Catania and
Reynolds experiment on X,Y coordinates. Figure 9.13 shows the plots for the six birds, with
reinforcements per hour on the X-axis and responses per minute on the Y-axis.
Herrnstein used a statistical procedure to fit his equation to the data of each pigeon.

Figure 9.13 presents the curves that best fit these results. Notice that all of the birds produce
rates of response that are described as a hyperbolic function of rate of reinforcement. Some of
the curves fit the data almost perfectly (e.g., pigeon 281), whereas others are less satisfactory
(e.g., pigeon 129). Overall, Herrnstein’s quantitative law of effect is well supported by these
findings.
The quantitative law of effect has been extended to magnitude of food reinforcement,

brain stimulation, quality of reinforcement, delay of positive reinforcement, rate of negative
reinforcement, magnitude or intensity of negative reinforcement, and delay of negative
reinforcement (see de Villiers, 1977, for a thorough review). In a summary of the evidence,
Peter de Villiers (1977) stated:

The remarkable generality of Herrnstein’s equation is apparent from this survey. The behavior
of rats, pigeons, monkeys and . . . people is equally well accounted for, whether the behavior
is lever pressing, key pecking, running speed, or response latency in a variety of experimental
settings. The reinforcers can be as different as food, sugar water, escape from shock or loud
noise or cold water, electrical stimulation of a variety of brain loci, or turning a comedy record
back on. Out of 53 tests of Equation [9.6] on group data the least-squares fit of the equation
accounts for over 90% of the variance in 42 cases and for over 80% in another six cases. Out
of 45 tests on individual data, the equation accounts for over 90% of the variance in 32 cases
and for over 80% in another seven cases. The literature appears to contain no evidence for
a substantially different equation than Equation [9.6]. . . .This equation therefore provides a
powerful but simple framework for the quantification of the relation between response strength
and both positive and negative reinforcement. (p. 262)
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ON THE APPLIED SIDE: APPLICATION OF THE
QUANTITATIVE LAW OF EFFECT

Dr. JackMcDowell (Fig. 9.14) was the first researcher to useHerrnstein’s matching equation
for a single schedule of reinforcement (Equation 9.6) to describe human behavior in a
natural setting. Many people are interested in his work on applications of matching theory
to the treatment of clinical problems. However, McDowell states, “I really think of myself
as a basic researcher” (personal communication, March 3, 1989). As a college student, he
started out as a physics major and gained a strong background in natural science. He recalls
that, “I regarded psychology as a discipline with interesting problems but terrible methods.
Indeed, I thought it was absurd to consider psychology a science. Then I took a course in
what we now call behavior analysis. I was surprised to find a specialty in psychology that
looked likewhat I had always thought of as science. So I changedmymajor to psychology and
later entered a behavioral graduate program” (personal communication, March 3, 1989). In
1972, at Yale University, McDowell worked on the philosophical foundations of behavior
modification. By 1978, he had completed a clinical internship at the State University of
New York, Stony Brook, and a year later he received his Ph.D. in clinical psychology.
McDowell’s doctoral dissertation focused on the mathematical description of behavior, and
he has maintained this emphasis throughout his career. At the time of this writing, he is a
professor of clinical psychology and psychobiology at EmoryUniversity inAtlanta, Georgia;
he also maintains a private practice in behavior therapy.

Mathematics and Behavior Modification

McDowell’s expertise in mathematics and behavior modification spurred him to apply Her-
rnstein’s matching equation for a single operant to a clinically relevant problem. Carr and
McDowell (1980) had been involved in the treatment of a 10-year-old boy who repeatedly
and severely scratched himself (Fig. 9.15). Before treatment the boy had a large number
of open sores on his scalp, face, back, arms, and legs. In addition, the boy’s body was cov-
ered with scabs, scars, and skin discoloration, where new wounds could be produced. In
their 1980 paper, Carr and McDowell demonstrated that the boy’s scratching was operant

FIG. 9.14. Jack McDowell. Reprinted with permission.
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FIG. 9.15. Rate of social reinforcement and

self-injurious scratching of a young boy.

The data were fitted by Herrnstein’s single-

operant equation (Equation 9.6). Values of k

and Re and percentage variance accounted

for by the curve fit are shown. Adapted from

Quantification of Steady-State Operant Be-
havior (pp. 311–324), by J. J. McDowell,

1981, Amsterdam: Elsevier/North-Holland.

behavior. Careful observation showed that the scratching occurred predominantly when
he and other family members were in the living room watching television. This suggested
that the self-injurious behavior was under stimulus control. In other words, the family and
setting made scratching more likely to occur.
Next, Carr and McDowell (1980) looked for potential reinforcing consequences main-

taining the boy’s self-injurious behavior. The researchers suspected that the consequences
were social, because scratching appeared to be under the stimulus control of familymembers.
In any family interaction there are many social exchanges, and the task was to identify those
consequences that reliably followed the boy’s scratching. Observation showed that family
members reliably reprimanded the boy when he engaged in self-injury. Reprimands are
seemingly negative events, but the literature makes it clear that both approval and dis-
approval may serve as reinforcement. Although social reinforcement by reprimands was
a good guess, it was still necessary to show that these consequences in fact functioned as
reinforcement. The first step was to take baseline measures of the rate of scratching and
the rate of reprimands. Following this, the family members were required to ignore the
boy’s behavior. That is, the presumed reinforcer was withdrawn (i.e., extinction), and the
researchers continued to monitor the rate of scratching. Next, the potential reinforcer was
reinstated by having the family members again reprimand the boy for his misconduct. Rel-
ative to baseline, the scratching decreased when reprimands were withdrawn and increased
when they were reinstated. This test identified the reprimands as positive reinforcement
for scratching. Once the reinforcement for scratching was identified, behavior modification
was used to eliminate the self-injurious behavior.
In a subsequent report, McDowell (1981) analyzed the boy’s baseline data in terms of the

quantitative law of effect. He plotted the reprimands per hour on the X-axis and scratches
per hour on the Y-axis. McDowell then fit the matching equation for a single schedule of
reinforcement (Equation 9.6) to the points on the graph. Figure 9.15 shows the plot and
the curve of best fit. The matching equation provides an excellent description of the boy’s
behavior. You will notice that most of the points are on, or very close to, the hyperbolic
curve. McDowell has indicated the significance of this demonstration. He states:

As shown in the figure [9.15] the single-alternative hyperbola accounted for nearly all the vari-
ance in the data. This is especially noteworthy because the behavior occurred in an uncontrolled
environment where other factors that might have influenced the behavior had ample opportu-
nity to do so. It may be worth emphasizing that the rates of reprimanding . . . occurred naturally;
that is, they were not experimentally arranged. . . .Thus, the data . . . demonstrate the relevance
of matching theory to the natural ecology of human behavior. (McDowell, 1988, pp. 103–104)
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Overall, the quantitative law of effect or Herrnstein’s hyperbolic equation has been an
important contribution to the understanding of human behavior and to the modification
of human behavior in applied settings (see Martens, Lochner, & Kelly, 1992, for further
evidence; Fisher & Mazur, 1997, for a review).
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http://www.pigeon.psy.tufts.edu/eam/eam7.htm This module is designed to illustrate the
patch problems of optimal foraging. Students can control the rate of reinforcementwithin
a patch and its depletion rate.

http://www.envmed.rochester.edu/wwwrap/behavior/jeab articles exp/1999/jeab-71-03-
0355.pdf An article is available by William Baum and his associates on foraging, the
generalized matching law, and contingency discrimination. This is a good example of the
experimental analysis of choice in the context of foraging.

http://www.psych.auckland.ac.nz/psych/ugrad/STAGE3/461.309FC/Teach309/Theories%
20of%20Matching/MATCHMAX.htm The Web site gives more detailed accounts of
matching, maximizing, melioration, and tests of these alternative theoretical models.

STUDY QUESTIONS

1. In a behavioral view, what is meant by choice and preference? Give a common
example. (235)

2. Compare a single-operant analysis to an analysis based on alternative sources of
reinforcement. (236)

3. Describe the two-key procedure in terms of a pigeon experiment. Why have con-
current schedules of reinforcement received so much attention? (236–237)

4. What are concurrent-ratio schedules and what is the steady-state effect of such con-
tingencies?What about concurrent fixed-interval schedules? Describe the advantage
of concurrent VI VI schedules. (237)

5. Summarize the analytical problems of rapid switching or changing over between
concurrent schedules. Why does switching occur? How does a changeover delay
(COD) help solve the problem? (239)
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6. State four laboratory procedures used to study choice. What is a Findley procedure
and how does it compare with the two-key method? When would you use a Findley
procedure? (240)

7. State the relationship known as the matching law. Describe Herrnstein’s (1961b)
experiment and what he found. (241)

8. Know how to calculate the proportional rate of response and proportional rate of
reinforcement.Write the matching equation in terms of proportions and know what
each term means. Create a graph showing the matching relationship. (243)

9. Cite evidence about the generality of thematching law.Give an example ofmatching
in human communication. (244)

9. How can departures from matching occur? What is time matching and when is it
applicable?Write amatching equation for time spent on alternatives and knowwhat
the terms mean. (245)

11. Be able to write a matching equation for more than two alternatives. (246)
12. ADVANCED ISSUE: In a concurrent VI VI experiment in which matching is ex-

pected, how can sources of error arise? Transform the proportional-matching equa-
tion to a ratio-matching expression. Write the power law for matching of ratios.
Define the a and k values of the generalized matching equation. Be able to discuss
bias and sensitivity. (246–247)

13. ADVANCED ISSUE (MORE): Write the algebraic equation for a straight line.
Know the concepts of slope and intercept. Write the generalized matching (power
law) equation in log-linear form. What is the slope and intercept of the log-linear
equation? Be able to read a table of results that shows ratio matching.
(249)

14. ADVANCED ISSUE (MORE): Understand how the logarithms of the ratios are
obtained. Know that the logarithm of a number is simply a transformation of scale.
State what the slope and intercept values must be for ideal matching. Know how to
plot the log ratios of reinforcement and response on X,Y coordinates. Explain where
the line intercepts the Y coordinate and the rate at which the line rises (i.e., slope).
What is undermatching (refer to slope)? Be able to tell the difference between ideal
matching and undermatching by plots on X,Y coordinates. Do the same for bias
(refer to intercept). (252)

15. ADVANCED ISSUE (MORE): Know how to set the values of log-ratio reinforce-
ment for a matching experiment. Explain how the log-ratio of response is obtained.
How dowe show the relationship between relative rate of reinforcement and relative
rate of response? (253)

16. ADVANCE ISSUE (END): Discuss the plot of pigeon 22 by White and Davison
(1973). How are statistical estimates of slope (sensitivity) and intercept (bias) ob-
tained? What were the bias and sensitivity estimates for pigeon 22 and what do the
values mean? Read a plot on X,Y coordinates of the results. How does a measure of
explained variance relate to prediction accuracy? (253)

17. Draw out the implications of the matching law in terms of child compliance and
parental rates of reinforcement. (254)

18. Why do Myerson and Hale (1984) recommend the use of VI schedules in behavior
modification? (255)

19. Be able to discuss optimal foraging, matching, and melioration. Give an example
of the application of matching theory to foraging by a flock of free-ranging wild
pigeons. (256)

20. Discuss the behavioral economic analysis of choice and addiction, referring to price
and substitute commodities. (257)
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21. In terms of behavior analysis, define impulsive and self-controlled behavior. State
the Ainslie–Rachlin principle and how this leads to preference reversal. What is a
commitment response? Give an example of an experiment with birds on preference
reversal and self-control. Describe a second experiment on commitment and self-
control in pigeons. What are the general conclusions from this research? (258)

22. What is the quantitative law of effect and extraneous sources of reinforcement?
(261)

23. ADVANCED ISSUE: Be able to show how the proportional-matching equation
may be used to obtain an expression of absolute response rate (quantitative law
of effect). Write the Herrnstein absolute rate equation and know what each term
means. (261)

24. ADVANCE ISSUE (END): According to the quantitative law of effect, how do
background sources of reinforcement (Re) modify the impact of a schedule of re-
inforcement? Give an example based on dialing for dollars. Read a graph of the
dialing-for-dollars experiment and interpret the two hyperbolic curves in terms of
Re. (260)

25. Read Herrnstein’s graph of the data from six birds (Catania & Reynolds, 1968)
using the quantitative law of effect. How generalizable is the absolute rate equation?
(263)

26. Discuss McDowell’s (1981, 1988; Carr & McDowell, 1980) use of the quantita-
tive law of effect in behavior modification. Read a graph of self-injurious behavior,
relating reprimands per hour to the number of scratches each hour. What is the
theoretical importance of this relationship? (264)

BRIEF QUIZ

1. In terms of behavior, choice is concerned with
(a) the distribution of behavior among alternative sources of reinforcement
(b) the decision-making capabilities of the organism
(c) the information processing during decision making
(d) the differential reinforcement of alternative behavior

2. To investigate choice in the laboratory, use
(a) a Skinner box with a single manipulandum
(b) two cumulative recorders that are running successively
(c) concurrent schedules of reinforcement
(d) both a and b

3. In order to prevent switching on concurrent schedules
(a) program an intermittent schedule of reinforcement
(b) program a changeover delay
(c) program a multiple schedule
(d) program a DRO contingency

4. To investigate switching on concurrent schedules
(a) use a Findley procedure
(b) use a single response key that changes color with the schedule
(c) use a changeover key
(d) all of the above

5. Herrnstein’s (1961) experiment using a two-key concurrent VI VI schedule is
described by
(a) the matching law for a single alternative
(b) the quantitative law of effect
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(c) the proportional-matching equation
(d) the nonmatching function for multiple alternatives

6. The matching law has described the choice behavior of
(a) pigeons
(b) wagtails
(c) rats
(d) all of the above

7. When the response is continuous rather than discrete, use a matching equation for
(a) time spent on each alternative
(b) rate of response on each alternative
(c) several concurrent schedules of reinforcement
(d) the single operant

8. The equation for matching of ratios of rates of response to rates of reinforcement
(a) is stated in terms of a power law
(b) includes a value for bias
(c) includes a value for sensitivity
(d) all of these

9. In contrast to optimal foraging, Herrnstein (1982) proposed a process of
(a) maximization
(b) melioration
(c) multiple-schedule inference
(d) monotonic matching

10. Behavioral economics involves the use of
(a) economic principles to describe and analyze behavioral choice
(b) economic factors to predict animal behavior in the marketplace
(c) economic indicators when pigeons are trading goods and services
(d) economic satisfaction due to reinforcement

Answers to brief quiz (page): a(235); c(236); b(240); d(240); c(243); d(244); d(245);
b(247); a(256); a(257)


