An

Arduino
Reference

for
Experimental
Psychologists

Notes from a Workshop

Michael Perone
Department of Psychology
West Virginia University

Edition

First edition, created April 30, 2017

Author’s Contact Information

Michael Perone

Department of Psychology
West Virginia University

53 Campus Drive

Morgantown, WV 26506-6040
Michael.Perone@mail.wvu.edu

Acknowledgements

Descriptions of, and advice about, Arduino coding techniques, and
development of the sketches herein, were informed and guided by
material at www.arduino.cc and the Arduino Programming Notebook,
August 2007 edition, by Brian W. Edwards.

The circuit drawings were prepared with Fritzing software available at
www.fritzing.org.
The website https://arduino-info.wikispaces.com was a valuable

resource, particularly in preparing the circuits and sketches involving the
stepper motor and the infrared remote control.

A few illustrations were adapted from open-source materials designed by
Linz Craig, Nick Poole, Prashanta Aryal, Theo Simpson, Tai Johnson, and
Eli Santistevan of Sparkfun Electronics.

The physical computing schematic in Part 1 was contributed to the public
domain by Nevit Dilmen (Own work) [CCO], via Wikimedia Commons
(https://commons.wikimedia.org/wiki/File%3APhysical computing.svg).

The “Anatomy of a C function” in Part 4 is from
https://www.arduino.cc/en/Reference/FunctionDeclaration.

The resistor decoder in the Quick Reference is by Bret Victor,
http://worrydream.com/ResistorDecoder/.

License

This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License

@OSO

To see a copy of the license, visit:
https://creativecommons.org/licenses/by-nc-sa/4.0/

mailto:Michael.Perone@mail.wvu.edu
http://www.arduino.cc/
http://www.fritzing.org/
https://arduino-info.wikispaces.com/
https://commons.wikimedia.org/wiki/File%3APhysical_computing.svg
https://www.arduino.cc/en/Reference/FunctionDeclaration
http://worrydream.com/ResistorDecoder/
https://creativecommons.org/licenses/by-nc-sa/4.0/

contents

N BT OAUCTION <.ttt e et et et e et et e e e e e e eeeseee e eeeseeeeeeeaseasaeaeeeeeeaeaseseanaeaeseseseasessenneaseseesneaeanas

Part 1: Physical Computing & Basic Prototyping Materials
The Arduino UNo MiICrOCONTIOIEI.........uiiiiieee ettt e e e e et e e e e rabe e e e e s bae e e e nbaeeeenaseeeeennnenas
o] 012 ot | I @] s oY U T o =SS
Building Prototypes with an Arduino and a Breadboardccueeiiiiiie et

Part 2: Sensors & Actuators
201 o o RPN
Potentiometers aNd ThEir Kin ...ttt eeeetae e e e e e e eerabbeeeeeeeeeeeabbaeeeeeeessesnsssreseeeeeesnnssrens
AAVANCEA SENSOIS ...ciiiriiieie e ettt et e e et eeeiare e e e e e eeeeibareeeeeeeeesabbareeeeeesassssarasaeeeeesasssasesseeseesasssrasereeesenesssrraneeeas
Light EMitting DIOAES (LEDS) ..eeiiiuiiiieeiiieieeiiitee ettt e ettt e e et e e s e e e et e e e s aaa e e e sabaeessnbaeeeesseeesenasaeeesnssenesenssenas
oY 2o Iy o1 T 1] SRR
Liquid Crystal Display (LCD) PANEISeeeeiuriieeeiiiee et e eectte e eect e eeette e e e st e e e eeatteeeesnbaee e e nbseeeeeasseeesanssesaeansenns
1Y/ 0 o Y RN
PEISONAl COMPULEIS. .. eeiiteeeetreeetee ettt etee ettt e ettt e et e e e teeeteeeeteeeeateeeebeeeesseeeteeeesseesnseeeseseesseseaseeeesseeenteeesssessnseean

Part 3: Circuit Elements

Part 4. Programming Elements
Arduino Integrated Development ENVironment (IDE)ooiiiiuiiiiiiiiiie ettt ettt ettt e e etre e e e e anaea e
F AN e [T T | T = 1T
Basic Structure of an ArdUiNO SKEETCN........c..uiiii et e e e et e e e et e e e e abaee e e aneeas
VT Y o] (T3 T Lo I oY 1] =1] U
F N VA T g T o 1T U
LN oY [A [ol @ 01T =1 o - EES
(O] a] o[[o] s W O] o 1] - | o] 5T
2 ToTo] (=T Ta T O o T=Y = o] SRR
S Tox o [0 o N

Part 5: Common Programming Tasks

Y F=q 1= N g o TV USSRt
BT = 01 =1 I @ T o T SRR
F Yo T Lo Y= 1T 10 RSP
F YT Lo = @ LU o LU RSP
2T 0ol o oY -SSP
[WeToT o 1] o F= 20RO PP PP PPPPPPPPPPPPPPPRE
B To] [0 = 21 Y/ = d o TSP
Y Y QT a Y=o 1U] s o £ ST SS

Part 6: Sample Sketches & Circuits

BIiNK (With CIFCUIT AFAWING)cocoevveeeeiiieeeeeteee ettt e ettt e e ettt e e e et e e e e e e e e e e abaee e eeabaeeeeeabseeeesatbeeeeansseeeennseeas 45
RO To [T =Y =T Y B oY d USRSt 46
Reading Serial Strings as Parameters (With Circuit drawing)ccooeeeecceeeecciee et e 48
Count Button Presses (With CirCUIt AIraWING)ccueeeoccuueeeeeiieee ettt e eeee e e eetee e e eetae e e e etaeeeeebaeeeseabaeaesesreeaasanes 50
Count Button Presses DEDOUNCEMcoouiiiiiiiiiee ittt sttt s e s riee e st e s sbae e sabeesbaeesabeesabeesnnseesbaeenns 52
Adjustable Tone (With CirCUIt AIOWING)..........coccueiiiiciiie ettt e e e s e e s e e e s sate e e e s sasaeessssaeessnnsaeeean 54
LCD Hello World (With CirCUit drQWinG)oooecuveeiieiieeeeciiee et ecte e e sre e e stee e s sbae e e e s baee e e s atee s esasaeeaesnnenas 56
@D =Yool [T =4 o T=T 1T TR o o Uo SRR 60
L LT 141 o T O OO PO OO OO P PSUPPUOPRRTRRRTP 62
oYL 4T) T2 0]] L= PSSR 63
oYL 4T Q2= 1 =T PSR SS 64
oY 4T 2] 2 1 1 SRS 66
JOYStICK URIasoniC RGB LEDc.ccuuiiiiiiiiieiciiiee et ee ettt e ettt e s st e e e s satae e e st ae e e esabteeeeabteeaenssaaeeesnsseeaennsseeessnsenns 68
SBIVO SW P i ieieieeeeeeeeeeeee ettt ee et eeeeeeeeee e e e e e e e e eeseeeseaeaeeesaseaaaaaasaasasasasseseessesssesasssessesseasessesasessesseensseseseseasaeeeesaeees 72
o] 0o o Yot =1 | ST 73
PHOTOCEI RESPONSE COUNTviiiiiiiieeciiiie ettt e ettt e e et e e et e e e e abe e e e e aaaee e e asaeeeeaaseaeeeansaseeeanssaeeeanssaeesansseeanansses 74
TWO BULEONS ...ttt e e e et e e e e e e e e e bbbttt ee e e e e e anbe et e eeee e e e e s sbeeeeeeeesaaannnseeeeaeeesaaannnee 76
Y] o] T AV =T=] PSP 78
Y A=Y o] o T<T g o1V A= LSRR 79
Y A=Y o] oL oAV D=y - YL UROE 80
Temperature HUMIdity IMONITOTooii ettt e et e e et e e e e et e e e e s bt e e e eeasbeeeeennteeaeensreeeeennreas 82
O g g Lo N (= IYFed o =1 I q=Tol =T o o) o RSP SP 83
Remote Signal DECOAING EIEZ00oiiiiiiiieciieee ettt e e et e e e st e e e e et te e e s e tae e e e enabaeeeentaeeeennsaeeeennres 84
Transistor to Relay (With CirCUit ArAWING).............oiiecuieeeeiiiee ettt ecte e e e st e e e e etae e e e srae e e s saraeeesensaeeesnnsaneean 86
Optocoupler Test (WIth CIrCUIt AIOWING)..........cueeecueeeeeeeeeeeseeee e eete ettt e ettt e st e et a e e tteesetea e tsaeastseessesessseeeases 88
Analog [0 With PWM (With CirCUIt AraWINg)ooecueeeeieeecie et ettt e e ctee s te e s te e e sbae e sbeessraeessseessaeenaseens 90
Part 7: EXEICISES ... 92
RESOUICES ...ttt s bbbt se s nas 94

Appendices

OVEIVIBW .ttt ettt ettt e e e s e b e et e e e s s e e a bbb et e e e e e s s e b e e et e e e e e sana b e e et eeeeesaansbebeeeeesssannnneaeneeas 96
Elegoo UNo Project SUPEr SLArter Kit.......ou i eiee sttt ettt e e s rtae e e et ae e s e saaae e e e nraeeeenanaeas 97
ESCODAr & Perez-HErrera (2005)oco ittt e ettt e ettt e e ettt e e e e eaae e e e e eataeeeeenbaeeeeeabaeeeessbaeeeeansseeeennseeas 98
Y =T o o T=T g1 Y O N B - SRR 107

QUUICK RETEIEINCE ...t et e e ee e ee e et e e e e e e s e s s es s s s e s e e e eeeeeseeesesesesesessssssssssesasanesanas 109

Introduction

This document pulls together, in what | hope is a handy format, some topics explored in a “microcontroller
workshop” in the WVU Department of Psychology in the spring semester of 2017. This is not intended to be a
comprehensive treatment of anything in particular, but rather a compendium of information that | think is
interesting or useful. My conception of what is “interesting” or “useful” is that of an experimental psychologist
who sees microcontroller technology as a means of supporting basic research. Your individual needs may lead
you to a different opinion. Still, | hope there is enough overlap between us to make this material helpful to you.

The workshop was largely a show-and-tell: Each participant bought a kit
with an Arduino Uno microcontroller development board, a breadboard
and jumper wires, and a variety of devices for detecting events in the
world or making events happen in the world — this being the essence of
physical computing. Each week we assembled a few circuits with some of
the devices and paired each circuit with an Arduino “sketch” (program) to
make it go. The idea was to illustrate how you can handle inputs and
control outputs with relatively straightforward code and simple circuits.

We used the Elegoo Uno Project Super Starter Kit, and we fooled around with these devices:

e Forinput: buttons, potentiometer, joystick, photoresistor (a.k.a photocell), thermistor, DHT11 temperature
and humidity module, infrared receiver and handheld remote control

e For output: light emitting diodes (LEDs), liquid crystal display (LCD) panel, servo motor, stepper motor, active
buzzer, passive buzzer

e (Circuit elements: resistors, NPN transistor, relay, 4N25 optocoupler (the last was my addition; it was not
included in the kit), and — of course — the Arduino Uno, breadboard, and jumper wires.

Some weeks into the semester, we recognized that our circuits were
suffering from loose connections, partly because the Arduino and
breadboard were separate parts that could move and put strain on the
jumper wires, and partly because the Elegoo breadboard was, well,
maybe not of the highest quality. We made improvements by using an
Adafruit mounting plate to hold the Arduino firmly aligned with a half-
size breadboard.

This Reference is organized into seven sections as described in the table
of contents. Parts 1 through 3 provide simple (one might say “simplistic”
— but give me some slack, I’'m a psychologist, not an electrical engineer) descriptions of the hardware used in the
workshop. Part 4 describes essential elements of Arduino programming. This material is not comprehensive by
any stretch of the imagination, but it does cover what you need to know to get started on some serviceable
coding projects. Part 5 describes some ways to accomplish common tasks; these ways are not the only ways —
they may not even be the best ways — but they are fairly easy to understand and they work. Part 6 reproduces
some of the sketches and circuits we used in the workshop in case it may be useful to have them at hand. Part 7
offers some exercises to give you practice in coding.

You can find the official reference for Arduino programming at www.arduino.cc/en/Reference/HomePage. And
you can find an excellent set of tutorials at www.arduino.cc/en/Tutorial/HomePage. When you have a specific
problem to solve, a bit of Googling can be a time-saver: The members of the large Arduino programming
community have a wide range of interests and experience, and they are generous in sharing their knowledge.

https://www.amazon.com/Elegoo-Project-Tutorial-Prototype-Expansion/dp/B01D8KOZF4
https://www.adafruit.com/products/275
https://www.amazon.com/gp/product/B01DDI54II/ref=oh_aui_detailpage_o03_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B01DDI54II/ref=oh_aui_detailpage_o03_s00?ie=UTF8&psc=1
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Tutorial/HomePage

Part 1: Physical Computing &
Basic Prototyping Materials

The Arduino Uno Microcontroller

USB to
Computer e 9,4, xR R
VO3NLY
1317
7to 12V
DC input

Here, shown larger than life, is the Elegoo company’s version of the venerable Arduino Uno Revision 3
(hereafter, “the Arduino”). This is an essential part our physical computing tool kit for building prototypes of
circuits that can sense and control environmental events.

The Arduino can be powered through a USB cable attached to a personal computer (PC). It also has a power jack
so it can be powered with a 9V battery or a plug-in power supply that provides between 7V and 12V. Regardless
of the power source, the Arduino will regulate the voltage downward: It operates at 5V.

Along the top of the Arduino (as it is oriented in this photo) are 14 digital pins numbered 0 through 13. These
can be configured as inputs to sense discrete (digital) events such as button presses, or as outputs to make
things happen by turning devices on and off. Pins 0 and 1 are used when the Arduino communicates with the PC
through the USB cable; to avoid interference, we won’t use them. Note that six of the pins are marked with
dashes: 3,5, 6,9, 10, and 11. These pins are capable of pulse width modulation (PWM) which is a method for
simulating analog output using digital pins. Digital devices have only two states on and off or, in electronic
terms, HIGH (5 volts for our Arduino) or LOW (0 volts). The state of an analog device is continuously variable.
Pulse width modulation simulates an analog output signal by alternating between HIGH and LOW at frequencies
established by the programmer. More information about PWM is in Part 5 of this Reference.

At the bottom right of the Arduino are six analog input pins numbered AO through A5. Whereas a digital input
can detect only HIGH and LOW states (5V and 0V), an analog pin can detect a wide range of states anywhere
between 5V and OV. More information about analog input is in Part 5. See also the Quick Reference section,
which includes a table summarizing the functions of all 20 of the input/output pins.

5V — r 5V—/\/\
oV — oV —

Digital Signal Analog Signal

Also along the bottom of the Arduino are several power-related pins. Our interest is in the pins labeled 5V and
GND (ground, OV). The 5V pin is akin to the positive terminal of a battery, and the GND pin is akin to the
negative terminal. There’s another GND pin on the top of the board, next to Digital Pin 13. Electric current
flows when an appropriate device completes a
circuit between 5V and GND. The circuit illustrated
at right turns on a light emitting diode (LED). The o o Fansmw
positive lead of the LED is connected to 5V and the LI, DIGITAL (PUR=~)
negative lead is attached to GND via a resistor.
(Even though the Arduino’s power is modest, it
would burn out the LED quickly without that

resistor.)

In this circuit, the Arduino is not doing anything
interesting; it is just being used to power the LED.
We are treating the Arduino as if it were a battery.
Of course we want the Arduino to do more, such as
turning things on and off under the control of a
program.

The Arduino plays a more interesting role in the
Faw s second circuit, to the left. As before, the negative
e lead of the LED is connected to GND through a

s et resistor. The positive lead, however, is connected
to Digital Pin 13. With this arrangement, we can
program the Arduino to use the pin to output
current to the LED, turning the LED on by setting
the pin to HIGH and turning it off by setting the
pin to LOW.

Programs that run on the Arduino are called
“sketches.” Sketches are written on the PCin a
variant of the C++ programming language and
uploaded to the Arduino through the USB cable.
The sketch will run continuously whenever the
Arduino is powered. To stop the sketch, you can disconnect the Arduino’s power source (e.g., by unplugging the
USB cable) or press the reset button mounted on the upper left corner of the board. The reset button only stops
the sketch momentarily: After about a second, it starts over.

Information and advice about writing Arduino code can be found in Parts 4 and 5, and over two dozen of the
sketches prepared for the workshop can be found in Part 6 (complete with embarrassing typographical errors in
the comments and awkward code here and there). Sketches can be written using the Arduino Integrated
Development Environment described in Part 4. It is available for free at www.arduino.cc.

http://www.arduino.cc/

Physical Computing

The term physical computing is applied to

Sensors
arrangements of computer hardware and software
Interactive] that interact with the environment by detecting
System Interaction Real World events and making things happen. The diagram
:> shows the essential parts. In our case, the
Actuators “interactive system” is the Arduino microcontroller

and the sketch that is running on it. The “real
world” is that part of the environment that can affect the Arduino or be affected by it. Sensors are devices that
provide a way for the environment to affect the Arduino through its input pins. Actuators are devices that
provide a way for the Arduino to affect the environment though its output pins or serial communications port.
Electronic circuits connect the sensors and actuators to the Arduino’s input and output pins, and the Arduino’s
software (the sketch) determines how the Arduino will interpret information from the sensors and control the
actuators.

Physical computing is ubiquitous in modern life. Consider your microwave oven. Its embedded microcontroller
interacts with the world by receiving your commands through a keypad. By pressing a few keys on the outside
of the oven, you can tell it how long to cook and at what power level. The microcontroller interprets your key
presses and activates devices that, for example, generate radio waves that heat your food and start the motor
that turns the food in circles. Your oven probably has some internal sensors, too, that transmit information to
the microcontroller about the state of the food you are cooking. For example, a sensor might measure the
temperature of the food and the microcontroller’s software may respond by turning off the radio waves and
carousel motor when the target temperature is reached.

As a physical computing system, the microwave oven interacts with a pretty small part of the world. Other
systems are more expansive. Home security systems employ a wide range of sensors to detect motion, the
sound of breaking glass, the concentration of carbon monoxide, smoke, water in places where it shouldn’t be,
and whether specific doors and windows are open. The systems can respond to the information from these
sensors by texting the homeowner, sounding an alarm, or

calling the police or fire department.

Physical computing is common in basic experimental
psychology. Researchers in the experimental analysis of
behavior could be said to have gotten an early start. A
precursor of today’s systems came into wide use in the
second half of the twentieth century thanks to B. F. Skinner
and Ralph Gerbrands of Harvard University. They developed
a system of controlling events in behavioral test chambers
and recording the responses of animals using circuits that
combined electromechanical switches, steppers, relays,
counters, motors, and timers. The system had sensors —
lever switches to detect behavior — and actuators — lamps,
speakers, and food dispensers for delivering stimuli. There
were no microcontrollers to control this stuff; instead, the
systems used rather sophisticated electromechanical circuits
such as the one behind B. F. Skinner in the photo at right.

(To learn more about this period in the history of
experimental psychology, visit the Behavioral Apparatus
Virtual Museum curated by Kennon A. Lattal at
aubreydaniels.com/institute/museum.)

http://aubreydaniels.com/institute/museum

Electromechanical control circuits were eventually replaced by
computer technology. First came minicomputers which, by
today’s standards, weren’t all that “mini.” When fully
equipped with the components needed to store programs and
data — components such as a paper tape puncher/reader
(surprisingly common in the 1970s because they provided
cheap storage) or disk drives (expensive) — a minicomputer
might stand six feet tall and anywhere from about two to five
feet wide.

The first mass-produced minicomputer was the PDP-8 from the
Digital Equipment Corporation. (“PDP” was short for
“Programmable Data Processor.”) It served as the hardware
platform for a programming language developed specifically to
control behavioral experiments and collect data. The
language, “SKED” (and later, “Super SKED” and “SKED-11") was
designed by Arthur Snapper at Western Michigan University,
implemented on the PDP-8 (and later the PDP-11), and widely
used for about 20 years starting in the early 1970’s.

In the late 1980’s, Thomas Tatham, a behavior analyst trained
at Temple University, developed a variant of SKED for the
desktop microcomputers that had become popular. The
language, originally called Med State Notation, was first sold by
Med Associates, Inc. in 1987 along with a system of hardware
modules and cables to link the computer to behavioral test
chambers (the company also sold the chambers). The
language, renamed MED-PC, has been upgraded several times.
Today, Med’s software and hardware, in conjunction with a PC,
is probably the most widely used physical computing system in
experimental psychology.

The Med system has a significant limitation: it costs a lot of
money. A system based on the Arduino can be made without

much money, but it requires substantial technical knowledge plus the time and inclination to tinker and build.
The purpose of the microcontroller workshop is to introduce young behavior analysts to physical computing
with the Arduino, in the hope that some of them might be inspired to tinker and build.

Rogelio Escobar, a professor of psychology at the National Autonomous
University of Mexico, has achieved a high degree of technical sophistication
in the development of electronic equipment for experimental control and
behavioral recording. He has done magnificent work in creating physical
computing systems for the study of operant behavior, and he generously
shares his work — in both hardware and software — on his web site,
http://analisisdelaconducta.net/. His work is not restricted to physical
computing; he also has designed the experimental environments in which
behavior take place: the test chamber. His website includes files you can

use to build rat chambers using a 3D printer!

An article by Dr. Escobar and his student Carlos A. Perez-Herrera, published

in the Journal of the Experimental Analysis Behavior, is included as an appendix to this Reference. The article
describes a physical computing system that uses an Arduino to interface behavioral test chambers with a PC

running a Visual Basic program.

http://analisisdelaconducta.net/

10

Building Prototypes
with an Arduino and a Breadboard

Our Arduino is intended for building prototypes of physical
computing systems. Header strips mounted on the edges
of the board allow you to connect wires simply by pushing
one end into the header. Circuits with sensors and
actuators are built on a “breadboard” that has rows of tiny
sockets that likewise allow you to insert buttons, LEDs,
resistors, etc., by pushing their leads into the sockets and
to connect them to one another by pushing wires into the
sockets. Building circuits this way is relatively quick and
easy — no soldering — but the resulting product is fragile. If
you need a durable version of your circuit, you will need to
solder the microcontroller and various circuit elements together — a task beyond the scope of our little
workshop.

A typical breadboard, shown below alongside an Arduino, has four sections. The sections on each edge have two
vertical columns of sockets. The sockets in each column are connected to one another. This means that a wire
inserted into any socket within a column is electrically connected to the wires inserted into other sockets within
the same column. These
sections are called “power
rails” because they

et 343 normally are used as a
i mod [Bed convenient way to get
.o t: GND and 5V to the parts
P of a circuit. Asin the

illustration, a wire is run
from a GND pin on the
Arduino to one of the
sockets in the column
labeled “—.” Now all the
sockets in that column are
connected to GND.
Another wire is run from a
5V pin on the Arduino to
one of the sockets in the
“+” column, so that the
sockets in that column are
connected to positive.

.NI 90TVYNY

® 8 8 8 & 8 0 8 0 8 8 0 0 8 0L 0 N8 e B e 8RR e 8 e e e e
. 8 8 00
. 8 2 00

® & & & & & 5 5 5 5 5 5 s s s s s e
® & & 8 & 2 0 0 0 e 00 e e e e
e 8 & & & & 5 8 8 8 0 8 888
e 8 8 8 8 8 0 8 0 0 0 0 0 0 0 8 0 N0 e s e 0 e e
LI I IO I I D D D D B B O D D D R I B B B
® & & & & & & & 5 5 5 5 s s s s s s 88
e & & & & 2 2 2 8 e
® 8 & & & 2 2 8 8 8 08800
LI I IO T B D O B D D B D D D I D R D B B I B

The two middle sections
are organized into
horizontal rows. Within
each section, the five sockets in each row are connected. This allows you connect various components without
solder. Consider the red LED in the illustration. One of its leads is connected to a resistor which itself is
connected to GND. The other lead is connected to a wire that is connected to Pin 6 of the Arduino.

As you build circuits on your breadboard, remember: The sockets on the power rails are connected vertically for
the full length of the board. The sockets in the middle sections are connected horizontally in sets of five.

Part 2:

Sensors & Actuators

Buttons

11

As already noted, digital inputs have two states, LOW and HIGH, corresponding to OV (i.e., GND)
and 5V. If you are building a prototype circuit, the simplest way to figure digital input into the
design is with an electrical switch, commonly in the form of a push button. In our workshop, we
use a common button like the one shown here. It has two sets of leads, each pair constituting
the end points of a switch. Pressing the button connects the two leads. If the switchisin a

properly designed circuit, pressing the button causes electrical current to flow across the leads.

Although there are two switches in this device, there is only one button and pressing it operates the left switch
and the right switch simultaneously. The button is designed to be mounted across the gap running down the
middle of your breadboard. This keeps the left switch and the right switch from interfering with one another.

The illustration at right
shows the kind of circuit
to use with buttons in
our workshop. One lead
of the button’s right-side
switch is connected to
GND through the power
rail section of the
breadboard. The other
lead is connected to Pin
2 of the Arduino.
Pressing the button
closes the switch

e 8 & 0

e e 0 0 0 e 8 8 0 0

IVLIOIQ

(~=WMd)

=
<

between these two leads, sending GND to the Arduino. More information about how the Arduino’s pins handle
input from buttons can be found in Part 5 (“Common Programming Tasks”) in the section labeled “Digital Input.”

Potentiometers and Their Kin

A potentiometer — “pot” for short — is a variable resistor. At bottom left is a photo the underside of a common
pot that fits into a breadboard. It has three leads. The “side” leads are the ones in the back of the photo and the
“middle” lead is the one in front. On the top of the pot is a screw slot or a knob that can be turned. This varies
the resistance between the side leads and the middle lead. In the breadboard illustration, one side lead is
connected to 5V and the other
to GND. The middle lead is
connected to one of the
Arduino’s analog inputs. As
the pot is turned, the voltage
on the middle pin is varied
from OV to 5V.

12

The pot is a great model for a variety of analog sensors. NDB s

In our workshop we work with photoresistors and ey
thermistors. These work on the same principle as the

pot; the key difference is that resistance is varied not by r/\lwﬁ
turning a knob but rather by changes in light or -

temperature. When our photoresistor is wired as
shown here, there is a direct relation between the

%
intensity of the light falling on it and the voltage sent to am.,&?
the Arduino. With our thermistor wired in the same Pupast m

way, there is a direct relation
between the temperature
near its surface and the
voltage sent to the Arduino.

Potentiometer (left) and photoresistor

We also played with a joystick. This device is just a pair of potentiometers. The
resistance of one is changed by moving the stick vertically; the resistance of the other
is changed by moving the stick horizontally.

Advanced Sensors

We played with some more sophisticated sensors:

e DHT11 to measure temperature and humidity
e HC-SR04 Ultrasonic Ranging Monitor to measure distance
e Infrared remote control and IR detector/demodulator to receive inputs from a handheld remote control

These devices are easy to connect to the Arduino; see the circuit notes in these sketches in Part 6:

e DHT11: Temperature Humidity Monitor
e HC-SR04: Joystick Ultrasonic RGB LED
e Infrared remote: Remote Signal Reception & Remote Signal Decoding Elegoo

The devices area also surprisingly easy to use within a
sketch because each is supported with special libraries
that give you access to functions to program the Ardunio
to interact with the devices and convert the input into
meaningful forms (e.g., measures of temperature and
humidity information) with little or no calculation. (I'll say
a bit more about Arduino libraries in Part 4.) Here are the
libraries we used for these devices:

e DHT11: SimpleDHT
o HC-SR04: NewPing
e Infrared remote: IRremote

For more information about these devices, see:

e DHT11: https://learn.adafruit.com/dht/
e HC-SR0O4: https://www.cytron.com.my/p-sn-hc-sr04
e Infrared remote: https://arduino-info.wikispaces.com/IR-RemoteControl

https://learn.adafruit.com/dht/
https://www.cytron.com.my/p-sn-hc-sr04
https://arduino-info.wikispaces.com/IR-RemoteControl

13

Light Emitting Diodes (LEDs)

LEDs are highly efficient lamps and put out a bright light with relatively little electrical
current. They have two leads. The longer lead is positive (or “anode) side of the circuit
and the shorter lead is the negative (or cathode). The output of an Arduino digital pin
will overpower a standard LED, so a resistor must be added in series to reduce the
current. The resistor will dim the LED as well. If you want a bright light, use a 220-ohm
resistor. If you want something dimmer, try stronger resisters until you find something
that suits your needs.

In my circuits — in our workshop as in the illustrations in this Reference — the LED’s negative lead is connected to
GND through a 220-ohm resistor, and normally an Arduino output pin is attached to the positive lead. Setting
the pin to HIGH lights the LED. You may encounter circuits that put the resistor on the other side — the negative
lead is connected directly to GND and the positive lead is connected to the Arduino through the resistor. Both
arrangements accomplish the same results. //

P

In schematic circuit diagrams, an LED is shown by this symbol: e camione

Our workshop also uses a special LED: the “RGB LED. “ This is essentially a
combination of three LEDs in a single package with a common GND lead. It’s fun
to use because by varying the signal to the Red, Green and Blue leads, you can
create light of any color. The signal can be varied by adjusting the voltage or by
using the analogWrite() function discussed in Part 5.

Piezo Speakers

We can produce sound using the piezo speaker in our Elegoo kit. This simple
device can be operated directly by an Arduino digital output, but it produces
sound at low volume. The speaker has two leads. The e

one marked as positive (see the + sign with a circle
around it in the photo) is connected to the Arduino
output pin; the other is connected GND. The Arduino’s tone() function sends the signals
to the speaker to produce the sound. To make louder sounds with the Arduino, the signal
can be sent to an amplifier and then on to a proper 4- or 8-ohm speaker. Low-cost
amplifiers can be found at various sources including www.adafruit.com.

18

Liquid Crystal Display (LCD) Panels

Our Elegoo kit included a 2 x 16 LCD Display. This device can display 2 lines of 16 characters each. LCDs are easy
to program, but they require a lot of wiring. If your goal is to provide your sketch with a means of
communication — for example, to show the values of
variables as the sketch runs —then it will be much
easier to use the serial monitor that is included in the
Arduino IDE (see Part 5 for information about how to
use the serial monitor). If your goal is to create a self-
contained device that displays information — for
example, temperature, humidity, counts of behavior —
then an LCD may be a good choice.

http://www.adafruit.com/

14

LCDs have a parallel interface: The Arduino has to manipulate several pins on the LCD at once to control the
display. The interface consists of these pins:

e Aregister select (RS) pin that controls where in the LCD's memory data are written. You can select either the
data register, which holds what goes on the screen, or an instruction register, which is where the LCD's
controller looks for instructions on what to do next.

e A Read/Write (R/W) pin that selects reading mode or writing mode

e An Enable pin that enables writing to the registers

e 8data pins (DO -D7). The states of these pins (HIGH or LOW) are the bits that you're writing to a register
when you write, or the values you're reading when’ you read.

e There's also a display contrast pin (Vo), power supply pins (+5V and Gnd) and LED Backlight (A and K on the
LCD in our kit) pins that power the LCD, control the display contrast, and turn on and off the LED backlight,
respectively.

The process of controlling the display involves putting the data that form the image of what you want to display
into the data registers, then putting instructions in the instruction register. The LiquidCrystal library simplifies
this for you so you don't need to know the low-level instructions. The library allows you to control LCDs that are
compatible with the Hitachi HD44780 driver, and our LCD fits this description.

Hitachi-compatible LCDs can be controlled in two modes: 4-bit or 8-bit. The 4-bit mode requires fewer 1/O pins
from the Arduino. For displaying text on the screen, you can do most everything in 4-bit mode. The sample
sketches in Part 6 show how to control a 2x16 LCD in 4-bit mode. Also included in the sketches is pin-by-pin
instructions on how to wire the LCD’s interface to the Arduino. See “LCD Hello World” and “LCD Recycling Hello
World.”

Motors

Our kit includes three motors: a conventional direct-current (DC) motor, a servo motor, and a stepper motor.
The leads on the DC motor were so flimsy — mine kept falling off and had to be re-soldered several times — that |
decided not to use it in our workshop.

A conventional DC motor is designed to rotate a shaft continuously, with the speed of rotation proportional to
the applied voltage. A servo motor is designed to rotate the shaft through a 180-degree arc, moving in either
direction. A stepper motor can rotate the shaft through the entire 360 degrees. The key feature of servos and
steppers is that you can exert fine control over the position of the shafts. They are used in systems with
mechanical parts that must be moved precisely, such as copy machines, scanners, 3D computers, and robots.

https://www.arduino.cc/en/Reference/LiquidCrystal

15

Programming servos and steppers with the Arduino is straightforward because well-developed libraries provide
easy-to-use functions. The libraries in the workshop are named, appropriately, “Servo” and “Stepper.”

The motors in our workshop are popular models, and you can find a lot of information about them online. Our
servo is the Tower Pro Micro Servo SG90 and the stepper is the 28BYJ-48. A tutorial on the servo is at

https://www.intorobotics.com/tutorial-how-to-
control-the-tower-pro-sg90-servo-with-arduino-uno/.
A guide to the stepper is at https://arduino-
info.wikispaces.com/SmallSteppers.

Information about connecting the servo and stepper
to the Arduino can be found in these sketches in Part
6: “Servo Sweep,” "Stepper Sweep,” “Stepper by

Steps,” and “Stepper by Degrees.” The stepper came
with a printed circuit board that interfaces it with the Arduino (see photo at left), so the connections are easy.

Personal Computers

It may seem odd to include the PC in this discussion, but in fact it can serve both as a sensor (input device) and
as an actuator (output device). In our workshop the PC is used for both functions by communicating with the PC
through the serial monitor built into the Arduino IDE. See Part 5 of this Reference for information on how to
incorporate serial communication into an Arduino sketch and see Part 6 for many sketches that incorporate
serial communication for output (e.g., “Count Button Presses”). Some sketches use the PC as an input device;
see, in particular, “Reading Serial Strings” and “Reading Serial Strings as Parameters.” Finally, among the
appendices is an article by Escobar and Perez-Herrera (2015) that describes how to use the Arduino to interface
behavioral test chambers with a PC running a Visual Basic program.

https://www.intorobotics.com/tutorial-how-to-control-the-tower-pro-sg90-servo-with-arduino-uno/
https://www.intorobotics.com/tutorial-how-to-control-the-tower-pro-sg90-servo-with-arduino-uno/
https://arduino-info.wikispaces.com/SmallSteppers
https://arduino-info.wikispaces.com/SmallSteppers

16

Part 3:
Circult Elements

Resistors

Resistors are electronic components that limit the flow of electrons through a \
circuit. The amount of electrical resistance is measured in “ohms,”
commonly symbolized with the Greek letter omega:

Q

In schematic diagrams of circuits, a resistor is show by this symbol:

AW

The resistance is designated by bands on the component. The first two bands represent the most significant
digits of the resistor’s value. The third band is a multiplier. The last band is either gold or silver and indicates
the tolerance (error) in the resistor: gold = 5%, silver = 10%. This bit of information also allows you to orient the
resistor: The gold or silver band is the last. A handy chart to decode the bands of a resistor is included in the
Quick Reference section.

Resistance is related to electric current and voltage in an orderly fashion. Think of electric current as the flow of
electrons; it is measured in amperes (abbreviated “A”). Voltage is electric pressure, measured in volts. Ohm’s
Law puts them all together:

R=V/| or |=V/R or V=IxR

where R = resistance, V = voltage, and | =amps . If you don’t like “I” as the expression for electrical current,
blame the French: It stands for “intensité de courant,” the French term for current flow. (In case you’re
wondering: Georg Ohm, for whom the law is named, was German.)

Ohm’s Law is helpful when you need to figure out how much resistance to put into a circuit to limit the flow of
current. In our workshop, we generally power LEDs with 5V from the Arduino, but we add a 220-ohm resistor.
So we limit the current to .023 amp. Plugging 5 and 220 into I=V/R gives us | = 5/220 = .023 amp or 23 milliamps
(23 mA).

A nice tutorial on resistors is at https://learn.sparkfun.com/tutorials/resistors#power-rating

NPN Transistors

The NPN transistor is a common bi-polar junction transistor that can be used as an electronic switch. A very low
current can be used to operate the transistor, and the transistor can switch higher currents. It might help to
relate to this a switch you encounter every day: the light switch on the wall of your office. It takes almost no
energy to operate the switch (you can flick it on or off with a finger) but the switch itself can handle a lot of
energy —enough to turn on the overhead fluorescent lights and light up the entire room.

https://learn.sparkfun.com/tutorials/resistors%23power-rating

Our Arduino’s power supply is limited: It can supply up to about 40 mA
from each pin. That is not enough to drive some (many) actuators. The
transistor comes to the rescue: The Arduino has enough juice to operate
it. By turning the transistor on and off, the Arduino can control devices
that require higher currents, just as you can control currents high
enough to light a room by flicking a wall swtich.

Our Elegoo kit includes a widely used general-purpose transistor, the
PN2222A. To operate it, positive voltage is to the “Base” pin. This
creates a connection between the “Collector” and “Emitter” pins. We
can use an Arduino digital output pin to operate the transistor — a very
low current will be drawn — and let the higher current flow across the
Collector and Emitter to operate the actuator that draws a lot of current.

In our workshop we use the transistor to control a relay that requires
more juice than our Arduino output pins can provide. The sketch and
circuit are in Part 6; see “Transistor to Relay.”

17

COLLECTOR
3

BASE

TO-92
15 1
EMITTER

Our transistor. To identify the pins,
orient the transistor so the flat side is
facing you. Then, from left to right, are
the 1. Emitter, 2. Base, and 3. Collector.

For a good tutorial bi-polar junction transistors, see https://learn.sparkfun.com/tutorials/transistors.

Optocouplers

An optocoupler — also known as an optoisolator — is a transistor that is operated by light rather than by the
application of an electric current. This allows you to have two power sources communicate safely — when, for

example, relatively high-voltage devices in the lab must be sensed by
NER ae the low-voltage Ardunio. It can be used to protect the Arduino from
c E}L [5]c

NC [3] ’<

high voltages.
(2] E

Here is the circuit diagram of the 4N25 optocoupler, a widely used
model, alongside a drawing of the chip. This is the one in our
workshop (it is not included in the Elegoo kit, however). To orient the
chip, look for a little circle in one corner; this marks Pin 1. (It won't
be as easy to see as the one in the drawing.) From there, the pins are numbered sequentially in counter-
clockwise order. Passing current across Pins 1 and 2 lights an internal infrared LED. This causes the internal
phototransistor to close the circuit between Pin 4 (the transistor’s Emitter) and Pin 5 (the Collector) . The
infrared LED can handle relatively high voltages (with an appropriately sized resistor in series with it), and the
idea is to run the high-voltage output of lab devices across Pins 1 and 2. If we run the Arduino Uno’s 5V current
across Pins 4 and 5, we can send 5V back to the Arduino to detect the input.

il

More information is available in Part 6; see “Optocoupler Test.”

Relays

Whereas a transistor is an electronic switch (with no moving parts), a relay is an electromechanical switch. It
consists of an electromagnetic coil and a switch. Running current through the coil creates a magnetic field that
pulls the switch into place. When the current is removed, the magnetic field collapses and the switch returns to
its “normal” or resting position.

https://learn.sparkfun.com/tutorials/transistors

18

A small amount of electricity can energize the coil and move the switch. The

switch itself, however, can handle high currents at high voltages. Our Elegoo - =
kit includes a Songle SRD-05VDC-SLC-C Relay, which is widely used in o~
microcontroller applications. A 5V direct-current power supply, such as the C!?
one on board our Arduino Uno, is all that is needed to operate it, but it can
switch 10 A at 125 V of alternating current — enough to turn household
appliances on and off.
— >
Although the Arduino’s power Circuit diagram as viewed from the
gosom;u supply has enough juice to top of the Songle relay. Pinout,
A Mo operate the relay, the output pins counter-clockwise from top left: 1.
10A 250VAC 10A 125VAG themselves are limited to about Operate coil, 2. Common of switch,
‘SOARD?OR&SL'C 40 mA, and that’s not enough. 3. Operate coil, 4. Normally open

side of switch, 5. Normally closed
side of switch.

But we can overcome this
limitation by using the output pin
to operate a transistor, and let the
transistor switch the higher current required by the relay. More
information is in Part 6; see “Transistor to Relay.”

When the relay is in its normal state, there is an electrical connection between the “Common” pin and the
“Normally Closed” pin. When the relay is operated — that is, when its coil is energized — the switch moves,
disconnecting the Common pin from the Normally Closed pin and creating, instead, a connection between the
Common pin and the “Normally Open” pin. You can hear this happening: Moving the switch makes an audible
click. To energize the coil and operate the relay, one side of the coil must be connected to positive voltage and
the other side to GND.

19

Part 4:
Programming Elements

The Arduino Integrated Development Environment (IDE)

Probably the most common tool for @ sketch_apr24b | Arduino 18.0 = | B
writing Arduino sketches and
uploading them to your Arduino is
the integrated development
environment that is available for
free at www.arduino.cc. Here you
can download versions of the IDE

File Edit [Sketch| Tools Help

Werify/Compile Ctrl+R
Upload Ctrl+l
Upload Using Programmer Ctrl+5Shift+U

=]

Export compiled Binary Ctrl+AlE+5

for the Windows, Mac OS X, and o Show Sketch Folder Ctrl+K ,
. . //
Linux operating systems. You can o Include Library ! Manage Libraries...
also find straightforward Add File... .
instructions for installing the IDE 1 Add ZIP Library..
and getting started writing Arduino libraries
sketches. void loop() | Bridge
// put your main code here EEPROM
Arduino Libraries Esplora
Ethernet
! .
. . Irmata
The Arduino programming language . — HID
accessible within the IDE is a Cevboard
variant of C/C++. Its capabilities h:y ot
oLse

can be extended with libraries. A

library adds functions beyond those Rebot Control

available within the base language. RobotIR Remote
Robot Motor
Many libraries have been designed b
to help you write code for specific A
sensors or actuators. Such libraries dai
do most of the heavy lifting in SoftwareSerial
Commmm bW s vem —d

terms of highly technical code,
allowing you to concentrate on the purpose of your sketch and write code that is more straightforward.

The IDE comes with many popular libraries, and adding them to your sketch is simple. You just select the library
from the pull-down menu accessed by clicking Sketch and then Include Library (see above). Or you can manually
add the code that references the library. For example, suppose you want to use the “Servo” library. You could
click Servo in the library menu, or you could add this code at the top of your program: #include <Servo.h>

After the reference to the library has been added to your sketch, you can use any of the library’s functions in
your sketch. Of course you have to know about the functions to be able to use them, and unfortunately the
quality of the documentation for libraries is uneven. The best documentation is for the libraries listed at
www.arduino.cc (e.g., check out the documentation for the Servo library at
https://www.arduino.cc/en/Reference/Servo).

You can install additional libraries — and add them to the menu — by following these directions:
https://www.arduino.cc/en/Guide/Libraries.

http://www.arduino.cc/
http://www.arduino.cc/
https://www.arduino.cc/en/Reference/Servo
https://www.arduino.cc/en/Guide/Libraries

20

Basic Structure of an Arduino Sketch

Add library references
<€ and declare global

void setup() { variables up here.
// put your setup code here, to run once:

}

void loop() {
// put your main code here, to run repeatedly:

If you add your own
(functions, put them
down here.

In the Arduino IDE, a blank sketch page looks like this. The sketch must include the setup() and loop() functions.
Code in the setup() function will run just once, when your sketch starts. The sketch starts when either the
Arduino is powered or the reset button is pressed. Code in the loop() function will run from top to bottom and
then repeat as long as the Arduino has power or the reset button is left alone.

The space above the setup() function is where you should put references to libraries. This is also the place to
declare variables and constants that are available to (can be “seen by”) the entire sketch. The space below the
loop() function is a good place to put the code for any functions that you may provide. I'll say more about
variables, constants, and user-created functions later in Part 4.

Curly braces — { } — define the beginning and end of functions and some other blocks of code such as “if” blocks
(more on “if” in Part 5, “Branching”). A opening brace must be followed eventually by a closing brace.

A semicolon marks the end of a statement. Forgetting to end a line of code with a semicolon will lead to errors
when you compile the program. Because the error messages in the Arduino IDE are primitive by today’s
standards, you may have trouble figuring out what’s wrong. When you get a confusing compiler error, start by
looking for places where you forgot to type a semicolon.

Comments are preceded, on a line by line basis, by two forward slashes: //. A multi-line comment can be
preceded by /* and terminated by */. There are many examples in Part 6.

@ sketch_apr24c | Arduino 1.8.0 “Compiling” means translating your sketch, which is written in a language for
humans (believe it or not), into machine language that can be executed by the

File Edit Sketch Tools Help

Arduino’s central processor, the Amtel ATmega328/P. You can compile your
o o E E sketch by clicking the first control at the upper left of the IDE window — the
circle with the check box. If there are problems, error messages will appear at

the bottom of the window. If your code passes muster, the message will be “Done compiling”.

You also will make good use of the second control — the circle with the right-pointing error. Clicking it compiles
the sketch and, if it passes muster, uploads it to the Arduino through the USB cable.

A final point: Be careful about upper and lower case. The compiler won’t correct your typos.

21

Variables and Constants

Variables are locations in a computer’s memory that can store data and have a name (hopefully one that is
meaningful to the programmer). The content of a variable is sometimes called its value. Values can change as a
sketch is executed. For example, you might use a variable to keep track of the number of times a rat presses a
lever; your sketch would increment the value with each press.

Variables are classified by the kind of data they are capable of storing. These are the classifications in our
workshop:

e int: This class of variable can store an integer (a whole number) between -32,768 and 32,767.
° Iong: An integer that can vary from -2,147,483,648 to 2,147,483,647.

o float: This is for floating-point numbers, that is, numbers with a decimal point.

e String: This holds text, that is, a string of characters (note the upper-case ‘S”).

e boolean: A variable of this type can hold either of two values: true or false.

Integers are processed faster that floating-point variables. Unless a floating-point number is essential, use
integers.

You declare (create) a variable by stating the data type followed by the name you want to use:

e iInt respCount;

e long sessionTime;
e Tloat respRate;

e String ratlD;

You can store a value in a variable when you declare it. For example:

e Int interTriallnterval = 5000;
e boolean reinforcerlsReady = fTalse;

Constants also are locations in a computer’s memory that have a name and can store data. They differ from
variables in that their values are fixed. Once a constant is declared, its value cannot be changed. Constants are
used to make code more readable. For example, if an intertrial interval is going to be 5,000 milliseconds
throughout an experimental session, it is prudent to declare a constant with a meaningful name. Your code will
make more sense if it refers to something meaningful like “interTriallnterval” rather than “5000”. You declare a
constant by putting const before the data type in the declaration statement and assigning the fixed value:

e const iInt interTriallnterval = 5000;
e const String ratlD = “Chewa”;

Variables and constants have a property called scope. When the scope is global, the variable or constant can be
“seen” by any function throughout the sketch. To be global, a variable or constant must be declared at the top
of the sketch, before the setup() function.

When a variable (or constant) is declared within a function, it is local to that function. A local variable can be
seen only by the function in which it was declared.

The Arduino IDE includes some pre-established global constants, including: HIGH, LOW, INPUT, INPUT_PULLUP,
OUTPUT, LED_BUILTIN, true, false. You can read about them at www.arduino.cc/en/Reference.

http://www.arduino.cc/en/Reference

22

Array Variables

An array is a collection of variables with a single name, differentiated by an index number. The most common
way to declare an array is this:

int responselLatency[100];

This statement would create an array of 100 integers, with index values from 0 to 99. The first element in the
array would be responselatency[0] and the last would be responselLatency[99]. Note that the index is enclosed
within square brackets, not parentheses. That’s to differentiate array variables from functions.

You can create an array of any data type: int, long, float, String, Boolean, and so forth.

Arrays are often used within for loops (discussed in Part 5 in the section on “Looping”) where the loop counter is

used as the index for each element of the array. With just a few lines of code, tens, hundreds, or thousands of
elements can be accessed. Arrays allow for highly efficient coding.

Arithmetic Operators

Arithmetic is, for the most part, straightforward. Here are the operators :

Assignment operator, e.g. x = 3 assigns x the value of 3. Not to be confused with == which is a
comparison operator.

+ Addition

- Subraction

* Multiplication

/ Division

% Modulo. Returns the remainder when one integer is divided by another. If x=17andy=5thenx %y
returns 2.

The key thing is to recognize that a single equals sign (=) tells the compiler to assign a value, with the flow of
information going from right to left. Some examples:

e ratlD = “Chewa”; // puts the string “Chewa” into ratiD
e ITI = 3000; // puts the number 3000 into ITI
e oldTime = newTime; // puts the value of newTime into oldTime

e sum = trialOne + trialTwo; // adds the value of 2 variables and
puts them into sum

23

Comparison Operators

These operators are used to compare two values, normally within some kind of decision-making structure (see
“Branching” in Part 5). The key thing here is the comparison to see if two values are equal. The comparison
operator consists of two consecutive equals signs (==), which is to distinguish the comparison of values from the
assignment of values as described above. For example, this code is valid:

it (digitalRead (respPin) == LOW){ // input detected
respCount = respCount + 1; // so count it
ke

This code, with just one character missing (the second ‘=’) is invalid:

iT (digitalRead (respPin) = LOW){ // input detected
respCount = respCount + 1; // so count it
}

The problem is two-fold. First, this is an easy mistake to make. Second, the compiler will not catch it; both
blocks of code will pass muster. Yet the code in the second example will not yield the desired results. And you
might read, re-read, and re-re-read your code without finding your mistake. You have been warned.

== Equal to. Not to be confused with = which is the arithmetic assignment operator.

I= Not equal to

< Less than

> Greater than

<= Less than or equal to
>= Greater than or equal to

Boolean Operators

In Boolean logic (named after 19" century mathematician George Boole), expressions are either true or false,
and comparisons involving these expressions also are true or false. An “expression” could be a constant, a
variable, or a comparison. The Boolean operators are “and”, “or”, and “not”, symbolized as follows:

&& Logical “and”

| | Logical “or” (these characters are typed by pressing your keyboard’s back-slash key with the Shift key
held down)

! Logical “not” (negation)
Consider this bit of code:

1T ((digitalRead (respPin) == LOW)&& reinforcerlsReady{
respCount = respCount + 1; // count response
digitalWrite (reinforcerPin, HIGH);// turn on reinforcer

}

24

The parenthetical material in the if statement has a comparison [digitalRead (respPin) == LOW] and a Boolean
variable (take my word for it), reinforcerlsReady. If the comparison is true and the variable is true, then the if
statement is true and the next two lines of code will be executed.

The following table shows the results of the Boolean operations with different combinations of X and Y values.
In the table X and Y could be Boolean variables, Boolean constants, or expressions yielding Boolean results (i.e.,
the result of the expression would be true or false).

e X && Yis true only when both X and Y are true.
e X || Yis true when either X or Y (or both) is true.

e 1 Xis the negation of X; the expression is true when X if false, and false when X is true.

X Y X&&Y XY X
false false false false true
false true false true true
true false false true false
true true true true false

Functions

A function is a block of code that performs some well-defined duty (it carries out a function) and can be called to
action by other code within the sketch. Much of the Arduino programming system consists of predefined
functions. Here are a few examples, all of which are described in more detail in Part 6 and in the Quick
Reference.

e sqrt(Xx) - This function accepts one parameter: a number or a variable containing a number. It
calculates the square root of that number and returns the result.

e noTone(p) - This function accepts one parameter: the number of an output pin that is being used to
play a tone. It stops the tone. It returns nothing.

e millis() -This function accepts no parameters. It returns the time since the Arduino started, in
milliseconds. You might wonder why the parentheses are needed when the function accepts no
parameters. The parentheses designate that “millis” is the name of a function.

Although each of these functions performs a specific action, they differ from one another in certain ways. Two
of them need information (parameters) from the programmer in order to perform the action [sqrt(), noTone()].
One needs no parameter but returns a value [millis()]. One needs a parameter but returns no value [noTone()].

You are not limited to the built-in functions. Arduino libraries add specialized functions to serve a variety of
purposes, often in connection with a specific sensor or actuator. And you can write your own functions. If your
sketch needs to carry out a set of instructions more than once, you can put those instructions into a function
and then call that function from anywhere in your sketch.

To declare a function that returns a value, you must (a) indicate the type of value to be returned (e.g., int, long,
float, Boolean, etc.), (b) provide a name for the function, and (c) list the parameters, if any, that the function will
receive. The function’s code must be enclosed within curly braces and it must end with a return statement that
designates the information to be sent back to the section of the sketch that called the function.

To declare a function that does not return a value,
you must (a) begin with the word void, (b) provide
a name for the function, and (c) list the
parameters, if any, that the function will receive.
Again, the function’s code must be enclosed
within curly braces, but there is no return
statement.

25

Anatomy of a C function

Datatype of data returned,

any C datatype,
o Parameters passed to

“vold" If nothing Is returned.

/ Function name 1 \
/ '

int myMultiplyFunction(int x, int y){

function, any C datatype.

In the example at right, the myMultiplyFunction()
is designed to receive two ints, multiply them, and
return the result as an int.

int result; Return statement,

datatype matches
result = x * y;/ declaration.
return result;

The part of the sketch that calls the function could } -
look like this:

Curly braces required.

totalResponses = myMultiplyFunction(responsesPerTrial, trials);
Here | am assuming that totalResponses, responsesPerTrial, and trials are previously declared ints.

Suppose your sketch is controlling an operant conditioning session in which a pigeon sometimes earns 2-s access
to food and sometimes earns 6-s access. You could accomplish this with a function that accepts two
parameters: the output pin that is wired to the food hopper and the amount of time the hopper should be
raised to give the pigeon access to the food. The function might be:

void raiseHopper(int hopperPin, int milliseconds) {
// This function raises the hopper, waits, then lowers the hopper
digitalWrite(hopperPin, HIGH);
delay(milliseconds);
digitalWrite(hopperPin, LOW)

}

To give the pigeon 2-s access to food, the sketch in the loop() might say:

iT (respCount >= fixedRatio) {
raiseHopper(3, 2000);
}

Here | am assuming that the hopper is controlled by Pin 3.

The order of the parameters is important: The values in the calling statement must line up with the variables in
the function’s declaration. In this example, raiseHopper() understands 3 as the output pin for the hopper and
2000 as the duration because the function’s declaration lists the pin first and the duration second.

Your code can pass parameters to a function in the form of literal values (e.g., 3, 2000) or in the form of
variables or constants that store appropriate values. Suppose int “feeder” stores the number of the pin wired to
the hopper and int “access” stores the number of milliseconds the hopper should be raised. The calling code
could be

raiseHopper(feeder, access);

For more about writing functions, see https://www.arduino.cc/en/Reference/FunctionDeclaration.

https://www.arduino.cc/en/Reference/FunctionDeclaration

26

Part 5:
Common Programming Tasks

Communication through the Serial Port

The USB cable that you use to transfer sketches to
the Arduino IDE on your personal computer (PC)
also allows the PC to communicate with the sketch
as it runs on the Arduino. The communications
protocol uses Digital Pins 0 and 1, and that is why
you rarely encounter sketches in which these pins
are used for general input-output purposes.

The easiest way for the PC and Arduino to
communicate is through the serial monitor that is
built into the Arduino IDE. You can activate the
serial monitor via the “Tools” tab in the IDE’s menu bar. A pull-down menu in the lower right corner of the
monitor’s form allows you to set the baud rate, which is the speed of communication in bits per second. The
monitor’s baud rate must match the baud rate

: . (& :
in your sketch (more on this below). The ee A=Al i =
default rate of 9600 baud is commonly used. File Edit Sketch |Tools| Help

Auto Format Ctrl +T
Archive Sketch
Fix Encoding & Reload

The field at the top of the serial monitor form is
used to send information to the Arduino: Just
type what you want and click the “Send”

sketch_apr]

butt The | field. th that X Serial Monitor Ctrl +Shift+h
utton. The large field, the one that occupies s - . _

g . . . P vold seti Serial Plotter Ctrl +5hift+L
most of the form, displays information that the /)
Arduino sketch sends to the PC. put trrasa e o U

You can write your own programs to establish communication between a PC and an Arduino. One might
imagine a program on the PC that allows an experimenter to enter the parameters of an experiment and send
them to the Arduino. The Arduino sketch, in turn, would receive the parameters and use them in controlling an
experimental session. The article by Escobar and Perez-Herrera (2015), included as an appendix, provides an
illustration.

When you send information to the Arduino through the serial
monitor, the information is received as a string of characters.
You may, however, wish to convert the information into a
number. This can be accomplished by saving the received
information into a String variable and then using the tolint()
function which returns a long number. In Part 6, the sketch

COMG6 (Arduino/Genuino Uno)
|
B. F. Skinner

Converted to an integer = 0
007 James Bond

Converted to an integer = 7 “Reading Serial Strings as Parameters” shows how to use the

9876 tolnt() function. Sample output from the sketch is shown at left.

Converted to an integer = 9876

9876%ebra The Arduino supports a lot of serial communication functions

Converted to an integer = 9876 (see www.arduino.cc/en/Reference/Serial). Reviewed here are

7ebra9876 the ones that are used in the sample sketches in Part 6 of this
Reference.

Converted to an integer = 0

http://www.arduino.cc/en/Reference/Serial

27
Serial _begin(baud);

This function sets up the communications link between the Arduino and the PC. The “baud” parameter is
replaced with a number representing the desired baud rate (e.g., 9600). It should appear in the setup() function
of your sketch. Example:

Serial .begin(9600);
Serial _setTimeout(milliseconds);

This sets the amount of time, in milliseconds, that the sketch will spend reading the serial port before moving
on. This function should appear in the setup() function of your sketch. The default is 1000, that is, 1 second.
That’s a long time to wait. If you anticipate short strings, the time limit can be brief. | suggest that you play with
different limits to see what suits your purpose. Example:

Serial .setTimeout(10);
Serial.available(Q)

This function returns the number of characters that are available to be read from the serial port. The characters
are in the serial receive buffer and waiting to be read. If the result is 0, then there is nothing in the buffer, that
is, nothing to read. This function is commonly used within an “if” structure. If the function returns a value
greater than zero, we know there is something to read and we can take appropriate action. For example,

ifT (Serial.available() > 0) { // characters are in the buffer, so read them
Serial .readString()

This function tries to read a string of characters from the serial port. If will persevere until it reaches the time
limit imposed by the “Serial.setTimeout()” function. Here is an example in which the string is read and saved in
a string variable, then converted to a number for further processing.

iT (Serial.available() > 0) {
// yes, there are characters in the buffer, read them into string variable
String inputString = Serial.readStringQ);
// if possible, convert the string to a number and store it
// it the string does not beging with a numeral, a zero is returned
long number = inputString.tolnt();

Serial .print(string); and Serial._printin(string);

These two functions send a string of characters from the Arduino through the serial port to the PC. They differ
in one respect: “print” simply sends the string whereas “printIn” sends the string and follows with a newline
character that causes the next string to be printed on a new line. The “string” parameter can be a string
variable or a literal such as “Number of Responses.” Example:

Serial .print(“Lever Presses: “);
Serial .printin(responseCount); // responseCount is an integer variable

If responseCount held a value of 27, the following would appear in the serial monitor:

Lever Presses: 27

28

Most of the sketches in Part 6 incorporate serial communication. These include “Reading Serial Strings,”
“Reading Serial Strings as Parameters,” “Count Button Presses,” “Count Button Presses Debounced,” “Joystick
Simple,” “Joystick Refined,” and many more.

Timing

There are four timing functions available to Arduino programmers, two for creating delays and two for marking
the time.

delay(milliseconds);

This pauses the sketch for the specified number of milliseconds (one-thousandth of a second). For example:

delay((1000); // pause for a second

It is important to understand that “pausing” the sketch means that the main loop is halted during this time: no
inputs are read, no outputs written, no conditions tested, no calculations made. In some circumstances, this
may be exactly what you want. In other circumstances, you may need timing to go on concurrently with other
tasks. This can be accomplished using the millis() function described below —and some additional coding.

delayMicroseconds(microseconds);

This function pauses the sketch for the specified number of microseconds (one-millionth of a second). This
should be used only when very, very short pauses are required, otherwise use delay(). For example:

delayMicroseconds(100); // pause for a tenth of a millisecond

The maximum allowable pause with this function is 16,383 microseconds, or in other words, 0.016383 second.
millisQ

This function returns the time in milliseconds since the Arduino began running the current sketch — that is, since
the Arduino was powered up or reset. This number will overflow (go back to zero), after approximately 50 days.
As long as your sketch does not run for that long, you should be in good shape. Because the result of millis() can
be such a large number, use a long variable, rather than an int, to store the result.

long currentMilliseconds = millis(); // mark the time

Calculating the time between events is straightforward: The formula is Current Time — Time of Previous Event.
For example, to calculate the time between successive button presses, you would follow these steps: (a) Record
the time of the first press. (b) At the second press, get the current time and subtract the time of the first press.
This yields the time between the two presses. (c) Record the time of the most recent press so that you can
repeat the calculation when another press occurs. Here is some code that would accomplish the task, assuming
it is in the main loop of the sketch. After each press, the code prints (to the serial port) the time that has
elapsed since the previous press. (For simplicity, I've omitted the code to declare the variables, set up serial
communication, and detect the presses.)

interResponseTime = millis() - previousResponseTime; // time between responses
Serial.printin(interResponseTime); // sent result to serial port
previousResponseTime = millis(); // record time of this response

29

The sketches in this Reference use millis() to correct for contact bounce in noisy switches. For an example, see
the sketch entitled “Count Button Presses Debounced.”

micros()

This function returns the time in microseconds since the Arduino began running the current sketch — that is,
since the Arduino was powered up or reset. There are 1,000 microseconds in a millisecond or, in other words,
1,000,000 microseconds in a second. Because micros() can return such a large number, use a long variable,
rather than an int, to store the result. For example:

long currentMicroseconds = micros();

On our Arduino Uno, the timing resolution is 4 microseconds. That’s not bad: Timing is accurate to 0.000004
second!

The micros() function has an important limitation: This number it returns will overflow (go back to zero), after
approximately 70 minutes. Your sketch must start and end within that period, otherwise the results from
micros() will be unreliable.

30

Digital Input

The Arduino’s pins can be configured as inputs or outputs. Input pins receive signals from the environment.
Digital signals are discrete — the signal is “on” or “off” — as compared to analog signals that can vary continuously
across a range of values. A digital input pin, then, is configured to detect “on” or “off” states of the device that
is connected to it. The most common example in a prototype circuit is a button. In the psychology laboratory,
the connected devices would be designed to detect behavior, including rat levers, pigeon keys, or photocell
circuits that detect a mouse’s nose poke.

In digital circuits, “on” translates to HIGH which means, in the case of our Arduino Uno, there is 5V on the pin.
“Off” translates to LOW which means there is OV (i.e., GND) on the pin.

The Arduino’s input pins are “high impedence:” Left alone, they are susceptible to electrical noise in the
environment and will flip randomly between HIGH and LOW. This obviously is unacceptable if the pins are to be
used to detect the state of a button, lever, key, or photocell. One solution is to tie the input pin to 5V so that
when at rest, the pin is HIGH. We then wire up the input switch (button, key, etc.) so that it turning the switch
on (e.g., pressing the button) puts GND on the pin, pulling it LOW. Our sketch looks for the pin to go LOW and
when it does, we count that as a response.

Here is a diagram of the circuit:

Switch “Pullup” Input Circuit

—é— O—O/O——W\(—I _é_ =GND
10kR

Pin C>——o Ey

With the switch open, as shown here, the pin is connected to 5V through a 10K-ohm resistor. This
holds the pin in its HIGH state (it will be “pulled up”). One side of the switch is connected to GND (i.e.,
0V) and when it is closed, the pin will be connected to both GND and 5V. Because the path to GND has
no resistor in it — it is literally the “path of least resistance” — that connection takes precedence, and
the pin will be brought to a LOW state.

If it seems odd to you to set up a system in which a button press is detected when the input goes LOW
rather than HIGH, you can flip the 5V and GND and create a “pulldown” circuit:

Switch
+5v O O/ o ’\N\l “Pulldown” Input Circuit
PinCo>——— 10kR —l—

In this circuit, the pin is held LOW (“pulled down”) until the switch is closed, at which point 5V flows to
the pin, bringing it HIGH. With this circuit, a button press is detected when the input goes HIGH.

Either strategy will work, but the pullup strategy is the easier because the circuitry is built-in. If you
choose the pulldown strategy, you must provide the resistor and build the circuit. If you choose the
pullup strategy, you simply activate the built-in circuit within your Arduino sketch. This Reference
assumes the pullup strategy. EXCEPTION: For technical reasons, Pin 13 has trouble with the
INPUT_PULLUP mode, so don’t use it with Pin 13.

31
pinMode(pin, INPUT_PULLUP);

This function, which should be part of the setup() function of your sketch, configures the designated pin as an
input and activates the internal pullup circuit. The “pin” parameter can be the actual pin number or a variable
or constant that holds the pin number; the advantage of the latter is that the variable can convey the function of
the pin. Consider these two blocks of code:

pinMode(8, INPUT_PULLUP);
pinMode(9, INPUT_PULLUP);

const int leftLever = 8;
const int rightLever = 9;
pinMode(leftLever, INPUT_PULLUP);
pinMode(rightLever, INPUT_PULLUP);

The first block of code is simple. The second requires an extra step: creating two integer constants to hold the
pin numbers. Except in the simplest sketches, however, the extra effort is worthwhile. Using meaningful names
instead of numbers to refer to the pins will make your code easier to write, read, and debug.

digrtalRead(pin)

This function returns the current state of the pin, LOW or HIGH. The result can be stored in a variable or acted
upon immediately. A couple examples:

newButtonState = digitalRead(leftLever); // read pin, save result

if (digitalRead(startButton) == LOW){ // button is pressed, so do something..

Counting Discrete Input Events

Your sketch can execute its loop() function rapidly. A single input event (button press, key peck, etc.) may be
detected hundreds of times. For example, a rat may press a lever and hold it down for a half-second before
releasing it and pressing it again. Your sketch may “see” that first press several hundred times, but you only
want to count it as a single response. To do this, you need to keep track of changes in the state of the input.

To track changes in a button, for example, we need to create two variables. One is used to save the input state
the last time a change was detected; the other is used to hold the current input state. Each time we read the
input pin, we compare its new (current) state with the old state. If the new state does not match the old state,
that means the state has changed, in which case we need to (a) record the fact that a change was detected, by
updating the “old state” variable, and (b) evaluate the new state. If the new state is LOW (assuming a pullup
circuit is being used), then the button has been pressed and we count it. If the new state is HIGH, it means that
the button has been released and we can move along without incrementing our counter.

The sketch on the next page will do the trick. Each new button press increments a counter. The button must be
released and pressed anew for another increment. This is bare-bones code to show the essential logic involved
in detecting and counting discrete input events. The sketch doesn’t do anything with the information except to
send the value of the counter to the serial port so you can view it on the serial monitor.

32

// COUNTING DIGITAL INPUTS

// define some integers

const int respButton = 8; // button will be connected to Digital Pin 8
int respCount; // for counting responses

int newButtonState; // for keeping track of changes in button’s state
int oldButtonState; // for keeping track of changes in button’s state

void setup(Q) {
pinMode(respButton, INPUT_PULLUP); // input with internal pullup
Serial .begin(9600); // Open a serial port

}

void loop(Q) {
// read the state of the response button

newButtonState = digitalRead(respButton);
// has the state changed since our last read?
ifT (newButtonState != oldButtonState) {
// yes, the button state has changed so make a note of it
oldButtonState = newButtonState;
// is the new state of the button LOW, i.e., is button pressed?
iT (newButtonState == LOW){
respCount = respCount + 1; // yes, button is pressed, count it
Serial .printin(respCount); // send the count to the serial port

}
}
+

Debouncing

The electrical contacts inside a switch can vibrate briefly when the switch changes state — for example, when a
pushbutton is pressed. The vibrations, called “contact bounce,” generate spurious open/close transitions that
your sketch may read as multiple presses. This problem may be corrected in hardware with specialized circuitry.
Or it may be corrected in software with a simple strategy: Whenever a change in the input’s state is detected,
further changes are ignored for a little while — a very little while, perhaps 5 milliseconds or less (depending on
how “noisy” your switch may be). The idea is that the changes in the input that take place within milliseconds of
one another are caused by contact bounce and should be ignored.

To ignore contact bounce —to add “debouncing” code to our sketch —we need a function that tells time: We
will use the millis() function that returns the number of milliseconds that has elapsed since the Arduino began
running the current sketch.

The next sketch adds debouncing code to the sketch we just reviewed. The logic is s straightforward. When we
detect a change in the state of the button (LOW or pressed, HIGH or released), we note the time. Then, when
we detect further changes in the button state, we ignore them if they have occurred too soon after the last
recorded state change. "Too soon" is operationalized in the debounceDelay constant, which is set here to 3
milliseconds. If you happen to be using very noisy switches, you may need to set a longer delay.

To facilitate comparison of the two sketches, the code added for the purpose of debouncing is highlighted in
yellow.

33

// COUNTING DEBOUNCED DIGITAL INPUTS

// define some integers

const int debounceDelay = 3; // 3-millisecond delay for debouncing

long lastChangeMoment; // to record the moment of last input change

long elapsedChangeTime; // to record the passage of time since last change
const int respButton = 8; // button will be connected to Digital Pin 8

int respCount; // for counting responses

int newButtonState; // fTor keeping track of changes in button’s state

int oldButtonState; // for keeping track of changes in button’s state

void setup() {
pinMode(respButton, INPUT PULLUP); // input with internal pullup
Serial .begin(9600); // Open a serial port

}

void loop() {
// read the state of the response button
newButtonState = digitalRead(respButton);
// calculate how much time has passed since last button change
elapsedChangeTime = millis() - lastChangeMoment;
// has the state changed since our last read AND has the debounce delay passed?
iT ((newButtonState != oldButtonState) && (elapsedChangeTime >= debounceDelay)) {
// yes, the button state has changed and enough time has passed,
// so we will pay attention to the change
oldButtonState = newButtonState; // record the change in state
lastChangeMoment = millis(); // record the time of this change
// is the new state of the button LOW, i.e., is button pressed?
iT (newButtonState == LOW){
respCount = respCount + 1; // yes, button is pressed, count it
Serial.printin(respCount); // send the count to the serial port
}
¥
}

34

Digital Output

A digital output pin is configured to turn the device connected to it on or off. Most devices are designed so that
setting the output pin HIGH turns it on and setting the pin LOW turns it off. | have encountered devices that
work the opposite way, but in this Reference the assumption is that HIGH = on and LOW = off.

pinMode(pin, OUTPUT);

This is all it takes to configure a pin for output. The “pin” parameter can be the number of the pin or a constant
or variable with a meaningful name that holds the number of the pin (e.g., “pelletDispenser”).

digitalWrite(pin, HIGH); and digitalWrite(pin, LOW);

The digitalWrite function is used to change the state of the output pin; setting it HIGH allows 5V to flow and
setting it LOW grounds it.

The “Blink” sketch is the classic demonstration of digital output. The sketch is designed to control an LED. The
positive lead of the LED is connected to an output pin (Pin 13 in this example) and the negative side is connected
to GND. Note also the 220-ohm resistor in series with the LED.

>—WW——

Pin13 220R LED =

void setup() {
pinMode(13, OUTPUT); // initialize digital pin 13 as an output.

}

void loop() {
digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)

delay(1000); // wait for a second
digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second

}

35

Analog Input

Our Arduino has six input pins numbered AO through A5 that are capable of analog input. Whereas a digital
input can detect only LOW and HIGH states (0V and 50V), an analog pin can detect a wide range of states
anywhere between 0V and 5V. When used for analog input, these pins connect to an analog-to-digital (A/D)
converter. The A/D converter translates the voltage received by the analog pin to an integer between 0 and
1,023. If the voltage on the pinis O (i.e., GND), the A/D converter returns 0. If the voltage is 5, the A/D
converter returns 1,023. Intermediate voltages

lead to intermediate digital conversions. The SV —
point is this: Although an analog signal can have
infinite variation, our Arduino will digitize the oV —

variation into a finite set of 1,024 values (i.e., 0)
through 1,023). Analog Signal

You may be interested to know that Pins AO through A5 do not have to be used for analog input. They can be
configured for digital input or output using the code described in the previous two sections. If you use one of
these pins for digital input or digital output, and then you want to switch the pin to analog input, you should (a)
explicitly set the pin mode to simple input (i.e., with no pullup resistor circuit), and then pause for a few
milliseconds before attempting to read the analog pin. For example:

pinMode(pin, INPUT); // simple input mode
delay(10); // pause briefly to allow electrical noise to quiet down

This is the function for analog input:
analogRead(pin)

The “pin” parameter can be the number of the pin a constant or variable with a meaningful name that holds the
number of the pin (e.g., “temperatureSensor”). You may be wondering what kind of variable or constant should
be used to store AO, Al, etc. You can use an int because A0 (and the other analog pin designations) is a built-in
constant that holds the actual pin number. Here are the numbers:

A0=14, A1=15, A2=16, A3=17, A4=18, A5=19.
In other words, you can set the variable or constant to AO or to 14. These are equivalent statements:

AO;
14;

const int temperatureSensor
const int temperatureSensor

As noted above, the analogRead() function will return a value between 0 and 1,023. You probably will want to
convert the value to one that is more meaningful — for example, degrees Farenheit if your analog sensor is
responding to temperature. The map() function may come in handy:

map(val, fromMin, fromMax, toMin, toMax)where

val = the reading from the analog pin,

fromMin = the lowest possible reading

fromMax = the highest possible reading

toMin = the lowest possible value in the converted unit of measurement
toMax = the highest possible value in the converted unit of measurement

36

The map() function uses integer math. This would appear to pose a problem if, for example, you wanted to
convert the reading to voltage. To illustrate, suppose you wrote this code to get the voltage at Pin AO:

int pinReading = analogRead(AO0);
int volts = map(pinReading, 0, 1023, 0, 5);

The value read from the pin can be from 1 to 1,023. We want to convert that to something between 0V and 5V.
This seems like an easy way to do it. And yes, it will work, but not very well because in this code “volts” can take
on just six possible values: 0, 1, 2, 3, 4, 5. We won’t be able to measure fractional changes in voltage, even
though our instrument is capable of it. Our A/D converter is capable of discriminating variations in voltage of
5.0/1,204 = 0.005V.

To get around the integer limitations of the map() function, we can expand the conversion range and then use
floating-point math to break the results into decimal fractions. For example:

int newPot = analogRead(AQ); // read pin connected to 10K potentiometer

// then convert the reading to voltage in the next 2 lines

float potVolts = map(newPot, 0, 1023, 0, 500); // convert to voltage x 100
potVolts = potVolts / 100.0; // convert to voltage expressed to nearest .01 V
Serial.printin(potVolts); // show the voltage

By the way, it turns out that the potentiometer is a pretty good model for analog input in general. No matter
what kind of sensor you connect to an analog pin, it will input variations in voltage. It doesn’t matter if the
sensor is a potentiometer, a thermistor, a photoresistor, etc. Of course, if you’ve attached a thermistor, you
probably don’t really care about the input voltage; instead, you will want to convert the input signal to
temperature in degrees Fahrenheit or degrees Celsius. Or if you’ve attached a photoresistor, you may want to
convert the signal to lux, a measure of illumination. The coding to accomplish these things is not hard, but you
will have to do some research to figure out the conversion formula. Instructions may come with the sensor. In
many cases, sensors come with specialized Arduino libraries that do the conversions for you — and then all you
have to do is figure out which library functions to use.

Analog Output

As you may have surmised, an analog output pin is capable of sending out a wide range of voltages between 0V
and 5V. On this topic, | have good news and bad news. First, the bad: Our Arduino Uno does not have any
analog output pins! Some microcontroller boards in the Arduino extended family do have them, but the Uno is
not one of them. The good news is that our Arduino does provide a partial work-around: It has six digital pins
that can mimic analog output through a technique called Pulse Width Modulation (PWM). Here is the function:

analogWrite(pin,dutyCycle);

Here “pin” is the PWM-capable digital pin, configured as a output. On our Arduino, “pin” must be 3,5, 6, 9, 10,
11 (or, of course, a variable or constant storing one of those numbers). The other parameter, “dutyCycle,” is a
value between 0 and 255. It expresses the part of the pin’s normal cycle during which the pin will be HIGH. For
example, a dutyCycle value of 63 is 25% of the way between 0 and 255. This value will cause the pin to be HIGH
for 25% for the cycle (the “duty” part) and LOW for the other 75%. A value of 127 would have the pin be HIGH
for 50% of each cycle and LOW for the other 50%. (As you might guess, at the limits, a dutyCycle of 0 will keep
the pin LOW throughout the cycle, and a dutyCycle of 255 will keep the pin HIGH.)

If you attach motor to, say, Pin 3, adjusting the value of the dutyCycle will change the speed of the motor in
relatively fine gradations — 256 gradations (0-255) to be exact. If you attach an LED, adjusting the dutyCyle will
change the apparent brightness off the LED. The higher the value of the dutyCycle, the longer the motor or LED
are powered.

37

38

Branching

Code in an Arduino sketch is executed in linear fashion, statement by statement, unless otherwise directed.
Departures from a purely linear flow can be arranged in various ways. Here are three of them.

1t
The simple if structure tests a condition and, if the result is true, some code is executed. It works like this:

iT (expression){
... code that will be executed if the expression is true...

}

Here the expression in parentheses can be anything that is Boolean true or Boolean false. This is commonly
some kind of comparison [e.g., (responseCount >= fixedRatio)]. If the comparison istrue —if the
value of responseCount is greater than or equal to the value of fixedRatio, then the code inside the curly braces
will be executed and the program will continue with the statement after the second curly brace. If the
comparison is false, the program will skip the code inside the curly braces.

1f/else

This is a straightforward extension of the simple if structure. It works like this:

iT (expression) {
... code that will be executed if the expression is true...

}

else {
... code that will be executed if the expression is false...

}

Take careful note of the two pairs of braces. The first pair encompasses the code that will be executed if the
expression is true. The second pair of braces encompass the code that will be executed if the expression is false.

switch/case

This structure allows you to specify the code to be executed not just in one (if) or two (if/else) cases, but in any
number of cases. It works like this:

switch (variable) {

case 1:
... code that will be executed if variable == 1...
break;

case 2:
... code that will be executed if variable == 2...
break;

case 3:
... code that will be executed if variable == 3...
break;

default:
... code that will be executed if no match is found...
break;

An int or string variable is listed in the first line. This is followed a series of cases, each indicating a possible

value (A, B, C) that could match the value of the variable in the first line. The values must be literal integers or
literal strings. When the first match is encountered, the code that follows it is executed and then the program
flow skips to the end and picks up execution with the first line after the curly brace. The break statement at the
end of each case is required to mark the end of the code to be executed when a match is found; when the break

statement is reached, the program flow breaks out of the switch/case structure.

In the example above, I've listed three possible cases, but there is no practical limit to the number of cases. In

Part 6, there is a sketch with a switch/case that has over 20 cases; see “Remote Signal Decoding Elegoo.”

You also have the option of including a catch-all block of code to be executed if none of the cases matches the

variable. This default block of code is listed last.

Here's a little sketch to play with:

void setup(Q {
Serial .begin(9600);
}

void loop(Q) {
switch (X) {
case 1:
Serial.printin(X);
break;
case 2:
Serial.printin(X);
break;
case 4:
Serial.printIin(X);
break;
default:
Serial.printin(C'No match!™);
break;

by
delay (500);

'.

€8 COMS (Arduino/Genuina Uno)

e

=] E [|

N
No
No
No
No
NO
NO
No
No
No
No
NO
NO
No
No

N A= N Sy
match!
match!
match!
match!
match!
match!
match!
match!
match!
match!
match!
match!
match!
match!

1

1

2

m

Autoscroll

:No line ending v: :9600 baud

The int x is set to 9. As a result, the default code sends then phrase “No match!” to the serial monitor. What

will happen if you set x to 1? Or 2? Or 3? Or 4? Or 44?

40

Looping
Of the various looping statements, | will consider just one.

for

The classic for loop, as implemented in C, has this general format:

parenthesis

declare variable (optional)

initialize test increment or
decrement

Lol

for (int x = 0; x < 100; x++) {
Serial .printIn(x);
by

The loop’s header has three parts:

e |nitialization: Declare an integer type variable (if it hasn’t been declared already) and set a starting value.
e Test: A comparison involving the variable. The loop will execute until this comparison is false.

e Increment or Decrement: An expression that increases or decreases the value of the variable after each
loop.

In the example shown above, the int x starts at 0. The code within the loop — that is, the code within the curly
braces that mark the beginning and end of the loop — will be executed once. Then x will be incremented or
decremented and the resulting value will be tested. In this example, if it is true that x < 100, the code will be
executed again, and x will be incremented and tested again. Eventually, the test comparison will be false (i.e., x
will not be less than 100), at which point the loop is over. In the example, the values 0 through 99 would be sent
to the serial monitor.

You might be wondering about this expression: x++. This is coding shorthand for x = x + 1. If you prefer, you can

say x =x + 1. You can increment in other steps sizes: If we changed the increment to x = x + 2, the loop would
print0, 2, 4,6, ... 98.

Doing Math

The code to perform arithmetic is straightforward; you pretty much use the arithmetic operators described in
Part 4 as you did in grade school. The only difference is that the result is on the left of the equation because the
assignment operator sends values to the left. For example, to add variables a and b and store the result in c:

c =a + b;

If you have to code an expression involving, say, addition and division, you need to worry about the order of
operations. | can’t remember the rules about this, so | just use parenthesis to make the desired order explicit.

c =a+ b / c; isambiguoustome,solwouldsay c = (a + b) 7/ c;

41

If you want to code arithmetic with floating point variables, you need to designate any literal values as floating
point numbers even if they happen to be whole numbers. Consider this sketch:

€ COMS (Arduino/Genuino Una) =[=] = |
void setup() {
Serial _begin(9600); S —
h ¥ = 0.00, v = 0.33
void loop(Q) { x =0.00, v =0.33
float x = 1/3; ¥ = 0.00, v = 0.33
float y = 1./73.; x = 0.00, v = 0.33
Serial.print("x = "); _ _
Serial.print(x); ® =0.00, y =0.33
Serial.print(”, y = "); x = 0.00, vy = 0.33
Serial .printin(y); x = 0.00, v = 0.33
delay(1000); ¥ = 0.00, v = 0.33
} ¥ = 0.00, v = 0.33
x = 0.00, y = 0.33 -

We divide 1 by 3 and store the result in x. We expect 0.33, but we get 0.00. The reason is that the compiler is
treating 1 and 3 and integers, and 0 is the correct result for integer division in this case. We have to tell the
compiler to treat the literal values of 1 and 3 and floating point numbers. We do that by adding the decimal
points. If we designate 1 as ‘1.” and 3 as ‘3.” then our sketch will do floating point division and yield the
expected result, which we have stored in the float variable y in this example.

In addition to the arithmetic operators, the Arduino language provides a variety of mathematical functions.
Among the most commonly used are these:

abs(x)
Returns the absolute value of x.
constrain(x,a,b)

Constrains x to the range from a to b inclusive. For example, if x = 106 then contrain(x, 0, 100) would return 100.

max(X,y)

Returns the higher of two numbers. If x =5 and y = 1 then max(x, y) returns 5.

min(x,y)

Returns the lower of two numbers. If x =5 and y = 1 then min(x, y) returns 1.

pow(b,e)

Raises b to the ™ power. If b = 10 and e = 3 then pow(b, €) will return 1000. Note that e can be a fraction: If b =
10 and e = .5 then pow(b, e) = 3.16.

sgqre(x)

Returns the square root of x.

42

Sometimes you may need to convert a variable from one type to another. Here are some common conversion
functions. In each case, the parameter x can be of any valid numerical data type.

int(x) fong(x) Tloat(x)

convers x to an int, a long, or a float, respectively. (Thank you, Captain Obvious!)

If your sketch needs to receive numerical information from a user or a PC program through the serial port, the
information actually will be received as a string of characters. The user might intend '12.5’ to mean ‘twelve-and-

a-half’ but your sketch won’t see it that way unless you convert from a string to a numerical value. If the string
of characters is received into a string variable named ‘string’ then you can say

string.toFloat()
to convert it to a float or
string.tolnt()

to conver it to an int. Here is a sample sketch and the results. Note what happens when the string “1.33” is
converted to float variable x versus what happens when it is converted to int variable y.

& COMS (Arduino/Genuino Uno) =88] = |
String one = "1.33"; -Send
String two = "17";
x=1.33, y=1, z=17 L
void setup() { %=1.33, y=1, z=17
) Serial .begin(9600); %=1.33, y=1, z=17
®x=1.33, v=1, z=17 =
void loop(Q) { ®=1.33, y=1, z=17
float x = one.toFloat(); ¥=1.33, y=1, z=17
inty = one.toFloat(); %=1.33, y=1, z=17 4
int z = two.tolnt(); _ _ _
Serial .print(""x=""); ®=1.33, y=1, z=17
Serial.print(x); ®=1.33, wy=1, z=17
Ser!al-pr!nt(", y="); %=1.33, y=1, z=17
Ser!al.pr!nt(x); B x=1.33, y=1, z=17
Serial.print(", z="); ~1.33 -1 —17
Serial.printin(2); X=L-229, ¥=i, 27
delay(1000); ®=1.33, y=1, z=17
} ®=1.33, vy=1, =z=17
x=1.33, v=1, z=17

43

Making Sounds

A pure tone is a sine wave. Creating a sine wave Square wave
requires a true analog output pin and, as we

have noted, our Arduino Uno lacks one. It can,

however, generate high frequency square Ay
waves by turning a digital pin HIGH and LOW
rapidly. Attach the pin to a speaker (and
perhaps a suitable amplifier) and you can get a
tone. It won’t sound exactly like a pure (sine-
wave) tone, but it will be close enough for many
purposes.

Sine wave

We have two functions for tones, one to start a
tone of a specific frequency and the other to
stop the tone.

tone(pin,frequency,duration);

This function generates a square wave on the designated pin (50% on, 50% off), at the designated frequency (in
Hz), for the specified duration in milliseconds. The last parameter is optional; if omitted, the tone will play
continuously until stopped by the noTone() function described below. The minimum frequency is 31 Hz and the
maximum is 65,535 Hz. On the Arduino Uno, this function will interfere with Pulse Width Modulation [i.e., with
the analogWrite() function] on Pins 3 and 11.

noTone(pin);

This just turns off the square wave generated by a previous tone() function on the designated pin.

44

45

Part 6:
Sample Sketches & Circuits

Blink

/

*
Blink
This sketch alternates, every second, between setting an output pin (Digital Pin
13) HIGH (on) and LOW (off). It is called “Blink™” because it iIs assumed that an
LED is attached to Pin 13. When the pin is HIGH, the LED will be lit; when the
pin is LOW, the LED will be dark.

*/

void setup(Q) {
pinMode(13, OUTPUT); // initialize digital pin 13 as an output.

¥

void loop() {
digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)

delay(1000); // wait for a second
digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second

}

e e o 0
s 8 0
e e 0 @
e o o o o
® e s 0
e e o o
e e o 0@
e e s 0
® e s 0 0
e e e 0
e e o o o
e e & 0 @
e e o o o
e & & s o
e e e o @
* e e 00
e e o 0 0
e o o o o
e o @ o o
e e o 0 @
e 8 0
e e 0 @
e o o o o
e o 0
e e o 0

® 9 8 P S P P S S e P ST e e
® ® o ° 0 S S S S e e S OSSO
L B I B B B I B D D O B D R R
® & & 8 0 0 S O OSSN eSS
® & & 8 & 5 5 5 0 " S s S S S S S S S s
* e 0 0 e * e e 0w * e e e e e e e 4
® e 0 0 e ® o s e e " e e e e e 0 e o

"Blink" Circuit. Negative side ofthe LED is connected to GND through a 220-ohm resistor. Positive side of
the LED is connected to Pin 13, which is pinMode (OUTPUT). When the sketch sets Pin 13 to HIGH, +5V is
connected to the positive LED, completing the circuit and lighting the LED.

46

Reading Serial Strings

This sketch does not require any hardware €8 sketch_aprida | Arduino 1.8.2
beyond an Arduino connected to a PC. The sketch |File Edit Sketch Tools Help
demonstrates the use of the Arduino IDE’s serial
monitor and a way for the Arduino sketch to

Auto Format Ctrl+T
Archive Sketch

communicate with the PC via the serial monitor. sketch_apri 4z o ety i Wl

H H ; H " ”
Yo;/ -car; aclg\l/:_c,Jte the ste)r/al monitor via the “Tools 1 |void setug Serial Moritor Ctrle Shift+ M
tab in the IDE’s menu bar. 2 /1 pucy Serial Plotter Ctrb+ Shift+L

il WiFi101 Firmware Updater

& void loop(Board: "Arduino/Genuino Uno"
Port: "COM1"
Get Board Info

Programmer: "AYRISP mikll"

Burn Bootloader

/*

Reading_Serial_Strings

This sketch demonstrates one way to:

(a) receive a string that a user sends from the serial port;

(b) if the string begins with a numeral, convert it to an integer;
(c) send the string to the serial port;

(d) send the integer to the serial port.

Use the Serial Monitor to send strings to the sketch,
as well as to see the results that the sketch sends back.

Note use of these functions:

Serial .begin - to establish serial communications

Serial .setTimeout - to the set the amount of time the sketch will spend reading
the serial port before moving on

Serial .available - returns the number of characters in the serial input buffer

tolnt - converts a string that begins with a numeral to an integer integer

Serial .readString - reads a string from the serial port until the
timeout limit elapses (as set by Serial._setTimeout)

Serial.print - sends characters to the serial port

Serial.println - sends chacters to the serial port, followed by a line feed (so
the next thing sent to the port is shown on a new line)

Try sending these strings and see what happens:

B. F. Skinner
Will White

007 James Bond
9876
9876Zebra
Zebra9876

M. Perone
WVU Psychology Department
February 1, 2017

*/

Listing continues...

47

Reading Serial Strings cont’d

void setup() {
// initialize serial communication at 9600 bits per second:
Serial .begin(9600);
// set the time limit for reading a string to 10 ms
// if you anticipate only short strings, a shorter limit
// can be used;
// will need to be longer. play with the limit and the size
// of the strings you send and see what happens.
Serial.setTimeout(10);

}

void loop(Q) {
// are there any characters in the serial input buffer?
it (Serial.available() > 0) {
// yes, there are characters in the buffer, so...

if you anticipate longer strings, the time

// ...read them into string variable
String inputString = Serial.readString();
// ...and send the contents of the string variable back out

Serial .printin(inputString);

// if possible, convert the string to a number and store it

// if the string does not beging with a numeral, a zero is returned
long number =
// send the result to the serial port

Serial.print(""Converted to an integer

Serial .printin(number);

inputString.tolnt();

");

Converted
007 James
Converted
9876

Converted
9876Zebra
Converted
Zebra9g876

Converted

[Autoscroll

B. F. Skinner

to an

Bond

to an

to an

to an

to an

COME (Arduino/Genuino Uno)

integer

integer

integer

integer

integer

9876

9876

~

Noline ending -~ 9600baud ~ Sample output

48

Reading Serial Strings as Parameters

"Reading Serial Strings as Parameters" Circuit. Part: Passive buzzer(aka 'piezo speaker’). The Arduino
sketch adjusts the frequency(pitch) ofthe tone output through the speaker, based on the user's input
through the Serial Monitor,

DIGITAL (PiM=~ i~

COUNO_,

Arduinog” .

/*
Reading_Serial_Strings_as Parameters

This sketch demonstrates one way to:

(a) receive a string that a user sends from the serial port;

(b) if the string begins with a numeral, convert it to an integer;
(c) use the integer to establish the frequency of a tone.

This sketch extends "Reading_Serial_Strings." You can use the Serial Monitor
to send strings to the sketch, and see the results that the sketch returns..

Note use of these functions:

Serial .begin - to establish serial communications

Serial .setTimeout - to the set the amount of time the sketch will spend reading
the serial port before moving on

Serial.available - returns the number of characters in the serial input buffer

tolnt - converts a string that begins with a numeral to an integer

Serial.readString - reads a string from the serial port until the timeout limit
elapses (as set by Serial._setTimeout)

Serial.print - sends characters to the serial port

Serial.println - sends chacters to the serial port, followed by a line feed (so
the next thing sent to the port is shown on a new line)

tone - sends a tone of a certain frequency through a designated output pin

noTone - turns off the tone at a designated pin

Circuit Notes:

Piezo speaker (passive buzzer):
Connect negative pin to GND

Connect positive pin to Digital Pin 2

M. Perone
WVU Psychology Department
February 1, 2017

*/

Listing continue...

Reading Serial Strings as Parameters cont’d

void setup() {
// initialize serial communication at 9600 bits per second:
Serial .begin(9600);
// set the time limit for reading a string to 3 ms
// if you anticipate only short strings, a short limit
// can be used; if you anticipate longer strings, the time
// will need to be longer. play with the limit and the size
// of the strings you send and see what happens.
Serial .setTimeout(3);

}

void loop(Q) {
// are there any characters in the serial input buffer?
it (Serial.available() > 0) {
// yes, there are characters in the buffer, so...

// ...read them into string variable
String inputString = Serial.readString();
// ...and send the contents of the string variable back out

Serial .printIn(inputString);
// if possible, convert the string to a number and store it
// if the string does not beging with a numeral, a zero is returned
long number = inputString.tolnt();
// is the number between 1 and 107
it (number > 0 && number < 11) {
// yes, convert to a frequency
int frequency = number * 300;
// play the tone @ specified frequency
tone(2, frequency);
// send some info to serial port
Serial.print("User input = ");
Serial .printin(number);
Serial.print(*"Tone frequency (Hz) = ");
Serial.printin(frequency);

49

}

else COME (Arduino/Genuino Uno)
{ |
// turn tone off >
noTone(2); ,
// and send info User input = 2
Serial.print("User input = "); Tone frequency (Hz) = 600
Serial .printin(number); 4
Serial .printIn(*'Tone OFF™);
} User input = 4
Tone frequenc Hz) =
Y } freq y (Hz) = 1200
8
User input = 8
Tone frequency (Hz) = 2400

99
User input = 99
Tone OFF

Sample output. |MAutoscroll

50

Count Button Presses

/*

Count_Button_Presses

This sketch illustrates how to count button presses or any the digital input).
We want to count each press just once: If the user holds the button down,

the sketch will see this thousands of times, but we only want to increment our
counter once. The user must release the button and press it anew for the
response counter to be incremented.

Circuit Notes:

Button:

Connect one pin to GND

Connect the other pin to Digital Pin 8

Comments:

This sketch makes no effort to correct for bounce in the button®s electical
contacts, and therefore extra presses may be counted.

M. Perone
WVU Psychology Dept
February 1, 2017

*/

"Count Button Presses" Circuit, Parts: Button. When pressed, the button provides GND to Pin 8 which is
in pinMode (INPUT_PULLUP). The pin goes LOW when the button is pressed. The Arduino sketch counts
the number of presses.

.8 80
8 0 08
. 8 s 8
e 8 00
S A
.« 8 & 8 8
. 8 8 8 8
"8 e 80
. & 88
. 8 & 8 8
.8 e 00
a s 8 88
. 8880
LI A
a8 8 008
LB I
LI O
LI O
4 8 8 8 0
"8 8 0 0

o« s e 80
LI I
a8 8 8 8
LI O
LI
e 8 8 8 8
. 8 & 8 8
« s 8 8 a
e 8 8 88
e 8 & 8 8
"8 8 00
a8 8 & a
. 8 8 80
e e 80
e 8 & & 8
. 8 8 8
L I O}
4 s 0 8
. 8 8 8 8
e 0 80

Count Button Presses cont’d

// define some integer variables
int respCount;

int newButtonState;

int oldButtonState;

void setup() {
// Open a serial port
Serial .begin(9600);
// set Digital Pin 8 to input with internal pullup
pinMode(8, INPUT_PULLUP);
}

void loop(Q {
// read the state of the pin
newButtonState = digitalRead(8);
// has the state changed since our last read?
ifT (newButtonState !'= oldButtonState) {
// yes, the button state has changed so
// make a note of it
oldButtonState = newButtonState;
// is the new state of the button
// LOW, i.e., button is pressed?
if (newButtonState == LOW){
// yes, button is pressed, count it
respCount = respCount + 1;
// and send current count to serial port
Serial .printin(respCount);
}
}
}

51

52

Count Button Presses Debounced

This sketch uses the same circuit as “Count Button Presses”
/*
Count_Button_Presses_Debounced

This sketch illustrates how to count button presses or any the digital input).

We want to count each press just once: If the user holds the button down,

the sketch will see this thousands of times, but we only want to increment our
counter once. The user must release the button and press it anew for the

response counter to be incremented.

This is an extension of "Count Button Presses.'" In this sketch,a correction is made
for possible bounce in the button®s electical contacts. The logic is s
straightforward. When we detect a change iIn the state of the button (LOW or
pressed, HIGH or released), we note the time. Then, when we detect further changes
in the button state, we ignore them if they have occurred too soon after the last
recorded state change. '"Too soon" is operationalized in the debounceDelay
constant.

Circuit Notes:

Button:

Connect one pin to GND

Connect the other pin to Digital Pin 8
M. Perone

WVU Psychology Dept

February 1, 2017

*/

Listing continues...

53

Count Button Presses Debounced cont’d

// define some integer variables

int respCount;

int newButtonState;

int oldButtonState;

long lastButtonChangeTime;

const int debounceDelay = 3; // 3-ms debouce delay

void setup() {
// Open a serial port
Serial .begin(9600);
// set Digital Pin 8 to input with internal pullup
pinMode(8, INPUT_PULLUP);
}

void loop(Q) {
// read the state of the pin
newButtonState = digitalRead(8);

// is the state changed since our last read AND at least the debounce delay has
passed?

ifT ((newButtonState != oldButtonState) && ((millis() - lastButtonChangeTime) >=
debounceDelay)){

// Yes, the button state has changed and enough time has passed to pay
attention to the change
// make a note of the change in state
oldButtonState = newButtonState;
// and make a note of the time of this change
lastButtonChangeTime = millis();
// is the new state of the button
// LOW, i.e., button is pressed?
it (newButtonState == LOW){
// yes, button is pressed, count it
respCount = respCount + 1;
// and send current count to serial port
Serial .printin(respCount);
¥
¥
}

54

Adjustable Tone
/*
Adjustable_Tone

This is a simple demonstration of analog input. A potentiometer provides
input voltage to analog pin AO. The voltage is used to determine the
frequency of a tone that is output to pin 2.

Note use of these functions: analogRead, map, abs, tone.
Circuit Notes:

10K potentiometer:
Connect 1 outer pin to GND and 1 outer pint to +5V;
Connect middle pin to analog pin AO

Piezo speaker (passive buzzer):
Connect negative pin to GNS
Connect positive pin to digital pin 2

Comments:

A certain amount of noise is inherent in analog input. A common
way to compensate for this is to take multiple readings from the
input pin and average them - a procedure called 'smoothing.”™ In
this sketch, | have taken a simpler approach. After reading the
voltage on the analog pin and converting it to a number between
500 and 1500 (which will be used as my lowest and highest tone
frequencies),l check to see if the number has changed by at least
10 since the last reading. |If it has changed that much, I adjust
the frequency of the tone; otherwise, 1 leave the tone as-is. This
eliminates (most) tiny Ffluctuations in tone that would arise from
variablity in the voltage at the analog input.

M. Perone
WVU Psychology Dept
January 26, 2017

*/

Listing continues...

55

Adjustable Tone cont’d

int voltage; // voltage read from potentiometer connected to pin AO
int newToneFrequency; // frequency (Hz) of tone to be output
int oldToneFrequency; // last frequency (Hz) that was output
int change; // to save change from old frequency to new frequency

void setup() {

}

pinMode(AO, INPUT); // set analog pin A0 to input

void loop(Q) {

// read the voltage from analog input pin
voltage = analogRead(A0);
// convert voltage to a number between 500 and 1500
// this will be new tone frequency
newToneFrequency = map(voltage, 0, 1023, 500, 1500);
// calculate difference between old and new frequencies
change = newToneFrequency - oldToneFrequency;
// convert change to absolute value (get rid of negative numbers)
change = abs(change);
// it new tone is at least 10 Hz different from old tone...
if (change > 9) {
// ... go ahead and adjust the frequency that is output to the speaker...
tone(2, newToneFrequency);
// ... and save the value in oldToneFrequency
oldToneFrequency = newToneFrequency;

}

"Adjustable Tone" Circuit. Parts: 10K poteniometer, passive buzzer(aka 'piezo speaker'). The
potentiometer is used for an analog input. As this input voltage changes, the Arduino sketch adjusts the
frequency(pitch) of the tone output through the speaker.

T N S 5
pxmm Ardulno

L B B
e e e e
. 8 8 88
"0 e e 0
U I I
L I
.. e e e
LI B I
"0 e e e

. & 8 8 8
. 80 8
. 8 8 8 8
. 8 8 8 9
. 8 8 8 9
* 8 8 8 0
8 8 8
. 8 8 8 0
LI S A I

56

LCD Hello World

/*

LCD Hello World

Demonstrates the use a 16x2 LCD display. The LiquidCrystal library works with all
LCD displays that are compatible with the Hitachi HD44780 driver. There are many
of them out there, and you can usually tell them by the 16-pin interface.

This sketch prints "Hello World!" to the LCD in English, Spanish, Klingon, and
Italian. It also shows the time that has elapsed since the Arduino was reset.

Circuit Notes:

The circuit is not complicated, but there are a lot of wires. The LCD has 16
pins; we will make connections with 12 of them.

. VSS: GND on breadboard

. VDD: +5V on breadboard

VO: Wiper (output) of 10K potentiometer. Connect one input pin of the pot to
GND (on breadboard) and the other to +5V (on breadboard). Turning the pot
will adjust the contrast of the display.

4. RS: Digital Output 12. This is the "Register Select” pin of the LCD.
5. RW: GND (on breadboard). This pin sets the mode to Read or Write.
6. E: Digital Output 11. This is the "Enable™ pin of the LCD.

7. DO: not used

8. D1: not used

9. D2: not used

10. D3: not used
11
12
13
14

WN P

. D4: Digital Output 5
. D5: Digital Output 4
. D6: Digital Output 3
: D7: Digital Output 2
15: A: +5V (on breadboard) through a 220-ohm resistor
16: K: GND on breadboard). The A and K pins power the backlight.

Comments:

For the various versions of the "Hello World" message, | send 16 characters to
the LCD. The last several are just spaces. This is to ensure that a new
version completely overwrites the old version of the message.

Note the use of "switch...case”. From the Arduino Online Reference: Like "if"
statements,switch...case” controls the flow of programs by allowing programmers
to specify different code that should be executed in various conditions. In
particular, a switch statement compares the value of a variable to the values
specified In “case" statements. When a case statement is found whose value
matches that of the variable, the code in that case statement is run. The "break™
keyword exits the switch statement, and is typically used at the end of each
case. Without a break statement, the switch statement will continue executing the
following expressions "falling-through') until a break, or the end of the switch
statement is reached.

Library originally added 18 Apr 2008 by David A. Mellis

Library modified 5 Jul 2009 by Limor Fried (http://www.ladyada.net)
Example added 9 Jul 2009 by Tom lgoe; Modified 22 Nov 2010 by Tom Igoe
Modified 4 & 11 Feb 2017 by M. Perone, WVU Psychology Dept

Previous code that formed the basis of this sketch is in the public domain:
http://www.arduino.cc/en/Tutorial/LiquidCrystal

*/

http://www.ladyada.net/
http://www.arduino.cc/en/Tutorial/LiquidCrystal

LCD Hello World cont’d

Al me—
¥
o

§
=)
I

z Z s = 7 A
= 5 m om W\
[~
V3 fr—
B3 5V -4
o
S Cc
GND &Ho3
~ D
VIN
g
:U
g = ©
9 o - O o o o
;QSE‘D o w s o o
= £ £ = =T z = g = 2
U8 0 5 2T g o = = o Ua“-
= O ¥ »h £ o O 2 £ B T © 2 ~
(1]
NE
=]
(= .
»
2
»
»
=)) =]] =] w) =] =] 2] 2] =] =] 2| &] &
13 3
= = = @™ ® M g g g € g g g g - -
A S b = m m
o g s 228 B EF R I 99]
+ f=2]
=4
" o
-
[l
Om
=]

57

58

LCD Hello World cont’d

// include the library code:
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup(Q {
// set up the LCD"s number of characters per row, and rows:
lcd.begin(16, 2);
// Print a message to the LCD.
lcd.print(""Hello World! ");
¥

void loop(Q) {

// set the cursor to column O, line 1

// (note: line 1 is the second row, since counting begins with 0):

lcd.setCursor(0, 1);

// construct a string to show seconds since reset:

String message = "Elapsed: ";
message = message + (millis() /7 1000) + " s";
lcd.print(message);

// If 5 s has elapsed, "Hello World!" is translated to

// Spanish. At 10 s, the translation is to Klingon(!), etc.
long elapsedTime = millis() /7 1000; // elapsed time in s
switch (elapsedTime) {

case 5:

// position the cursor to Position 0, Line O
lcd.setCursor(0, 0);
// print 16 characters

lcd.print(""Hola Mundo! ");
// that®"s the end of the code for this case
break;

case 10:
lcd.setCursor(0, 0);
lcd.print('Qo® Vlvan! ");
break;

case 15:
lcd.setCursor(0, 0);
lcd.print('Salve Mondo! ");
break;

59

60

LCD Recycling Hello World

This sketch uses the same circuit as “LCD Hello World”

/*

LCD Hello World

Demonstrates the use a 16x2 LCD display. The LiquidCrystal library works with all
LCD displays that are compatible with the Hitachi HD44780 driver. There are many
of them out there, and you can usually tell them by the 16-pin interface.

This sketch prints "Hello World!" to the LCD in English, Spanish, Klingon, and
Italian, and then recycles back to English. It also shows the time that has
elapsed since the Arduino was reset.

Circuit Notes:

The circuit is not complicated, but there are a lot of wires. The LCD has 16
pins; we will make connections with 12 of them.

. VSS: GND on breadboard

. VDD: +5V on breadboard

. VO: Wiper (output) of 10K potentiometer. Connect one input pin of the pot to
GND (on breadboard) and the other to +5V (on breadboard). Turning the pot
will adjust the contrast of the display.

4. RS: Digital Output 12. This is the "Register Select” pin of the LCD.
5. RW: GND (on breadboard). This pin sets the mode to Read or Write.
6. E: Digital Output 11. This is the "Enable™ pin of the LCD.

7. DO: not used

8. D1: not used

9. D2: not used

10. D3: not used

11

12

13

14

WN P

. D4: Digital Output 5
. D5: Digital Output 4
. D6: Digital Output 3
: D7: Digital Output 2
15: A: +5V (on breadboard) through a 220-ohm resistor
16: K: GND on breadboard). The A and K pins power the backlight.

Comments:

For the various versions of the "Hello World" message, | send 16 characters to
the LCD. The last several are just spaces. This is to ensure that a new
version completely overwrites the old version of the message.

Note the use of "switch...case”. From the Arduino Online Reference: Like "if"
statements,"switch...case" controls the flow of programs by allowing programmers
to specify different code that should be executed in various conditions. In
particular, a switch statement compares the value of a variable to the values
specified In "case" statements. When a case statement is found whose value
matches that of the variable, the code in that case statement is run. The "break™
keyword exits the switch statement, and is typically used at the end of each
case. Without a break statement, the switch statement will continue executing the
following expressions "falling-through'™) until a break, or the end of the switch
statement is reached.

Library originally added 18 Apr 2008 by David A. Mellis

Library modified 5 Jul 2009 by Limor Fried (http://www.ladyada.net)
Example added 9 Jul 2009 by Tom lgoe; Modified 22 Nov 2010 by Tom lgoe
Modified 4 & 11 Feb 2017 by M. Perone, WVU Psychology Dept

Previous code that formed the basis of this sketch is in the public domain:
http://www.arduino.cc/en/Tutorial/LiquidCrystal

http://www.ladyada.net/
http://www.arduino.cc/en/Tutorial/LiquidCrystal

*/

LCD Recycling Hello World cont’d

// include the library code:
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

// establish a variable to keep track of the message cycle
long cycleStartTime;

void setup(Q) {
// set up the LCD"s number of columns and rows:
lcd.begin(16, 2);
// Print a message to the LCD.
lcd.print(""Hello World! ");

}

void loop() {
// set the cursor to column O, line 1
// (note: line 1 is the second row, since counting begins with 0):
lcd.setCursor(0, 1);
// construct a string to show seconds since reset:
String message = "Elapsed: ";
message = message + (millis() /7 1000) + " s";
lcd.print(message);
// 1f 5 s has elapsed, "Hello World!" is translated to
// Spanish. At 10 s, the translation is to Klingon(!), etc.
// Get the current time and convert to seconds
long elapsedTime = (millis() - cycleStartTime) / 1000;
// At 5, 10, 15 s, print greeting to LCD
switch (elapsedTime) {
case 5:
// position the cursor to Position 0, Line 0O
lcd.setCursor(0, 0);
// print 16 characters

lcd.print(""Hola Mundo! ");
// that®"s the end of the code for this case
break;

case 10:
lcd.setCursor(0, 0);
lcd.print("'Qo" Vivan! ");
break;

case 15:
lcd.setCursor(0, 0);
lcd.print('Salve Mondo! ");
break;

case 20:

// start over

// show English greeting
lcd.setCursor(0, 0);

lcd.print("Hello World!™);

// record the start time of this cycle
cycleStartTime = millis(Q;

break;

61

62

Thermistor

/*
Thermistor

This sketch performs an analog read on a thermistor connected

to Arduino Analog Pin 1. It converts the raw reading to voltage.
The raw reading can be from 0-1023 and the voltage from 0.0 to 5.0.
The sketch sends the raw reading and the voltage to the serial

port twice per second.

A thermistor is a temperature-sensitive variable resistor. As the
temperature of the thermistor is raised, the thermistor®s resistance is
lowered. This in turn leads to an increase in the voltage received from
the thermistor. So there is a direct relation between the temperature
and the voltage.

A thermistor is wired in the same way as a potentiometer. One lead is connected
To V. The other lead is connected to an analog input (Al in the sketch) AND to
Ground via a 10K-ohm resistor. The only difference is this: With a
potentiometer, resistance is controlled by turning a knob, but with a thermistor,
resistance is controlled by heat.

Circuilt notes:

1. Thermistor Lead 1 to 5v (lead numbering is arbitrary)
2. Thermistor = Lead 2 to Analog Input 1

3. Thermistor Lead 2 (again!) to GND via 10K-ohm resistor

Additiona factors are involved in converting the thermistor readings to
temperature. A comprehensive tutorial (based on a nicer thermistor than the
one in our Kkit) is here: https://learn.adafruit.com/thermistor/overview. We
won"t bother about this now because we have an easier way to read temperature
using the DHT11l, a device that directly returns temperature (and humidity).

M. Perone, WVU Psyc Department, Mar 18, 2017, Mar 31, 2017
*/

int thermistorPin = 1; // refers to the Arduino pin so it has a nice name

void setup() {
Serial .begin(9600); // set up serial communications

}

void loop() {
int thermReading = analogRead(thermistorPin); // get input from thermistor
float thermV = (thermReading * 5.0) / 1023.0; // convert to voltage
Serial.print("Raw: "™); // show the results...
Serial.print(thermReading);
Serial.print(’’, Volts: "™);
Serial.printin(thermV);
delay(500); // wait a half-sec before next reading

https://learn.adafruit.com/thermistor/overview

Joystick Simple
/*
Joystick Simple

This sketch reads the switch, x-axis, and y-axis of a joystick and sends the
readings to the serial port. Readings are made and sent every 50 ms.

It appears that the joystick board includes debouncing circuitry, so no need to
handle that in software.

Circuit Notes (1 recommend that all connections be made via the breadboard):

. Joystick GND to GND

. Joystick +5V to 5V

. Joystick VRx to Pin AO
. Joystick VRy to Pin Al
. Joystick SW to Pin D2

aprwWNPE

=

Perone, WVU Psyc Dept, Feb 18, 2017
*/

// Arduino pin numbers

const int switchPin = 2; // digital pin connected to switch output
const int xPin = 0; // analog pin connected to X output

const int yPin = 1; // analog pin connected to Y output

void setup(Q) {
pinMode(switchPin, INPUT PULLUP);
Serial .begin(9600);

}

void loop() {
Serial .print(*Sw: ');

Serial.print(digitalRead(switchPin));
Serial.print(™ X: ");

Serial .print(analogRead(xPin));
Serial .print(™ Y: ");

Serial .printin(analogRead(yPin));
delay(50);

63

64

Joystick Refined

/*

*/

Joystick Refined

This sketch reads the switch, x-axis, and y-axis of a joystick and sends the
readings to the serial port - but only if the readings have changed. Any change
in the switch is reported; changes in x and y are reported only if the change
exceeds some minimum value as designed in the minimumChange constant below.

It appears that the joystick board includes debouncing circuitry, so no need to
handle that in software.

Note the use of the "displayStickStatus™ function. For more information about
This structured coding technique, see
https://www.arduino.cc/en/Reference/FunctionDeclaration

Circuit Notes (1 recommend that all connections be made via the breadboard):

1. Joystick GND to GND

2. Joystick +5V to 5V

3. Joystick VRx to Pin AO
4. Joystick VRy to Pin Al
5. Joystick SW to Pin D2

M. Perone, WVU Psyc Dept, Feb 18, 2017

Listing continues...

https://www.arduino.cc/en/Reference/FunctionDeclaration

Joystick Refined cont’d

// Arduino pin numbers

const int switchPin = 2; // digital pin connected to switch output
const int xPin = 0; // analog pin connected to X output

const int yPin = 1; // analog pin connected to Y output

// To track changes in stick position and switch

int
int
int
int
int
int

oldSwitch;
newSwitch;
oldX;
newx;
oldy;
newy;

const int minimumChange = 3; // stick must change this much to trigger display
update

void setup() {
pinMode(switchPin, INPUT_PULLUP);
// next 3 lines: baseline reading of the stick
oldSwitch = digitalRead(switchPin);
oldX = analogRead(xPin);
oldY = analogRead(yPin);
Serial .begin(9600); // establish serial communication

}

void displayStickStatus(Q) {
// This function updates the display
Serial .print(*"Sw: ");
Serial .print(newSwitch);
Serial .print(™ X: '");
Serial .print(newX);
Serial.print(™ Y: "™);
Serial .printin(newY);

}

void loop(Q) {
int unsigned diff; // to track changes in X, Y coordinates
// switch - no need to debounce this fancy switch
newSwitch = digitalRead(switchPin);
it (newSwitch = oldSwitch) {

oldSwitch = newSwitch;

displayStickStatus();
ks
// X
newX = analogRead(xPin);
diff = newX - oldX;

it (diff >= minimumChange) {

¥

oldX = newX;
displayStickStatus();

/7Y

newY = analogRead(yPin);
diff = newY - oldY;

if (diff >= minimumChange) {

}
}

oldY = newY;
displayStickStatus();

66

Joystick RGB LED

/*

*/

//
co
co
co
co
co
co

//
in
in
in
in
in
in
co
up

Joystick RGB_LED

This sketch reads the switch, x-axis, and y-axis of a joystick and sends the
readings to the serial port - but only if the readings have changed. Any change
in the switch is reported; changes in x and y are reported only if the change
exceeds some minimum value as designed in the minimumChange constant below.

The X,Y values are used to adjust the red and blue leds within an RGB LED.

It appears that the joystick board includes debouncing circuitry, so no need to
handle that In software.

Note the use of the "displayStickStatus' and adjustColor functions. For more
information about structured coding techniques, see
https://www.arduino.cc/en/Reference/FunctionDeclaration

Circuit Notes (1 recommend that all connections be made via the breadboard):

Joystick GND to GND
Joystick +5V to 5V
Joystick VRx to Pin AO
Joystick VRy to Pin Al
Joystick SW to Pin D2

Orient RGB LED so that the longest leg is the second from the left. Then make
these connections from left to right:

1. (Leftmost pin) to Digital Pin 3 via a 220-ohm resistor

2. (Longest leg) to GND

3. to Digital Pin 5 via a 220-ohm resistor

4. to Digital Pin 6 via a 220-ohm resistor

M. Perone, WVU Psyc Dept, Feb 18, 2017

Arduino pin numbers; note only 2 of 3 "color" outputs are used
nst int switchPin = 2; // digital pin connected to switch output
nst int xPin = 0; // analog pin connected to X output
nst int yPin = 1; // analog pin connected to Y output
nst int redPin = 3; // Digital Pin 3 supports PWM
nst int greenPin = 5; // Digital Pin 5 supports PWM
nst int bluePin = 6; // Digital Pin 6 supports PWM

To track changes in stick position and switch

t oldSwitch;

t newSwitch;

t oldX;

t newX;

t oldy;

t newY;

nst int minimumChange = 5; // stick must change this much to trigger display
date

Listing continues...

https://www.arduino.cc/en/Reference/FunctionDeclaration

Joystick RGB LED cont’d

void setup() {

}

pinMode(switchPin, INPUT PULLUP);

// next 3 lines: baseline reading of the stick
oldSwitch = digitalRead(switchPin);

oldX = analogRead(xPin);

oldY = analogRead(yPin);

// get RGB LED going...

analogWrite(redPin,125);

analogWrite(bluePin,125);

analogWrite(greenPin,0); // not used

Serial .begin(9600); // establish serial communication

void displayStickStatus() {

}

// This function updates the display
Serial.print(*Sw: "™);
Serial.print(newSwitch);
Serial.print(™ X: ');

Serial .print(newX);

Serial .print(” VY: ');

Serial .printin(newY);

void adjustColor(){

}

// Note use of "map" function, which works like this:
//sensorValue = map(sensorValue, sensorMin, sensorMax, 0, 255);
int redvalue = map(newX, 0, 1023, 0, 255);

int bluevalue = map(newY,0,1023,0,255);

analogWrite(redPin, redvValue);

analogWrite(bluePin,bluevalue);

void loop(Q) {

}

int unsigned diff; // to track changes in X, Y coordinates

// switch - no need to debounce this fancy switch

newSwitch = digitalRead(switchPin);

it (newSwitch != oldSwitch) {
oldSwitch = newSwitch;
displayStickStatus();

ks

// X

newX = analogRead(xPin);

diff = newX - oldX;

if (diff >= minimumChange) {
oldX = newX;
displayStickStatus();
adjustColor(Q);

ks

/7Y

newy analogRead(yPin);

diff newY - oldY;

it (diff >= minimumChange) {
oldY = newY;
displayStickStatus();
adjustColor(Q);

}

67

68

Joystick Ultrasonic RGB LED

/*
Joystick Ultrasonic_RGB_LED
This sketch reads the switch, x-axis, and y-axis of a joystick and sends the
readings to the serial port - but only if the readings have changed. The X,Y

values are used to adjust the red and blue leds within an RGB LED.

The sketch pings an ultrasonic sensor every 50 ms. If an object is within 20 cm,
the LED is turned off.

Note the use of the "displayStickStatus', "adjustColor'™, and "LED" functions. For
more information aboutstructured coding techniques, see
https://www.arduino.cc/en/Reference/FunctionDeclaration

Circuit Notes (1 recommend that all connections be made via the breadboard):

Joystick GND to GND
Joystick +5V to 5V
Joystick VRx to Pin AO
Joystick VRy to Pin Al
Joystick SW to Pin D2

Orient RGB LED so that the longest leg is the second from the left. Then make
these connections from left to right:

1. (Leftmost pin) to Digital Pin 3 via a 220-ohm resistor

2. (Longest leg) to GND

3. to Digital Pin 5 via a 220-ohm resistor

4. to Digital Pin 6 via a 220-ohm resistor

Ultrasonic Sensor VCC to 5V
Ultrasonic Sensor Trig to Digital Pin 12
Ultrasonic Sensor Echo to Digital Pin 11
Ultrasonic Sensor GND to GND

M. Perone, WVU Psyc Dept, Feb 18, 2017
*/

// FOR ULTRASONIC SENSOR

#include <NewPing.h> // Library for ultrasonic senSors

#define TRIGGER _PIN 12 // Arduino pin tied to trigger pin on the ultrasonic
sensor.

#define ECHO_PIN 11 // Arduino pin tied to echo pin on the ultrasonic sensor.
#define MAX_DISTANCE 300 // Maximum distance we want to ping for (in centimeters).
// Maximum sensor distance is rated at 400-500cm.

NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE); // NewPing setup of pins and
maximum distance.

long lastPingTime;

int newSonicDistance;

const int minimumCentimeters = 20; // if something gets closer than this we turn
off LED

Listing continues...

https://www.arduino.cc/en/Reference/FunctionDeclaration

70

Joystick Ultrasonic RGB LED cont’d

// FOR JOYSTICK
const int switchPin = 2; // digital pin connected to switch output
const int xPin = 0; // analog pin connected to X output

const int yPin = 1; // analog pin connected to Y output

// To track changes in stick position and switch

oldSwitch;
newSwitch;

int
int
int
int
int
int

oldX;
newx;
oldy;
newy;

const int
update

minimumChange

5; // stick must change this much to trigger display

// FOR RGB LED (note: only the red and blue pins are actually used)
const int redPin = 3; // Digital Pin 3 supports PWM

const int greenPin = 5; // Digital Pin 5 supports PWM

const int bluePin = 6; // Digital Pin 6 supports PWM

void setup(Q {

pinMode(switchPin,

INPUT_PULLUP);

// next 3 lines: baseline reading of the stick
oldSwitch = digitalRead(switchPin);

oldX = analogRead(xPin);
oldY = analogRead(yPin);

// get RGB LED going...
analogWrite(redPin, 125);

analogWrite(bluePin, 125);

analogWrite(greenPin, 0); // not used

Serial .begin(9600); // establish serial communication

}

// FUNCTION TO SEND DATA TO SERIAL PORT
void displayStickStatus() {
Serial.print(*Sw: ");

Serial .print(newSwitch);

Serial .print(™ X: ')
Serial .print(newX);
Serial .print(" Y: ')
Serial .print(newY);
Serial.print(" Dist: ')
Serial .printin(newSonicDistance);

}

// FUNCTION TO CONTROL COLOR OF RGB LED
void adjustColor() {
// Note use of "map" function, which works like this:
//sensorValue = map(sensorValue, sensorMin, sensorMax, 0, 255);
int redvalue = map(newX, 0, 1023, 0, 255);
int bluevalue = map(newY, 0, 1023, 0, 255);
analogWrite(redPin, redValue);
analogWrite(bluePin, blueValue);

}

Listing continues...

Joystick Ultrasonic RGB LED cont’d

// FUNCTION TO TURN RGB LED ON AND OFF
// Note that it returns "true™ if LED is on and "false™ is LED
bool LED(String status) {
if (status == "Off"") {

analogWrite(redPin, 0);

analogWrite(greenPin, 0);

analogWrite(bluePin, 0);

return false;

}

else

A
adjustColor();
return true;

}
+

void loop(Q {
int unsigned diff; // to track changes in X, Y coordinates
bool statusLED;
// Ping the ultrasonic sensor every 50 ms
iT ((millisQ) - lastPingTime) > 49) {
newSonicDistance = sonar.ping_cm(); // get distance in cm
lastPingTime = millis(Q);
iT (newSonicDistance < minimumCentimeters) {
statusLED = LED('OFF'");
}

else

{

}
}

// switch - no need to debounce this fancy switch
newSwitch = digitalRead(switchPin);
if (newSwitch = oldSwitch) {
oldSwitch = newSwitch;
displayStickStatus();
}
// X
newX = analogRead(xPin);
diff = newX - oldX;
it (diff >= minimumChange) {
oldX = newX;
displayStickStatus();
ifT (statusLED == true) {
adjustColor(Q);
}

}
/7Y

newY = analogRead(yPin);
diff = newY - oldY;
it (diff >= minimumChange) {
oldY = newyY;
displayStickStatus();
iT (statusLED == true) {
adjustColor(Q);
}

}
}

statusLED = LED('On");

is off.

71

72

Servo Sweep
/*
Servo_Sweep

This sketch moves a servo through its full range of motion, from
O to 180 degrees, back and forth. The number of degrees in each
change of position and the pause between each change of position
are stored in variables "degreeChange"™ and 'pauseDuration™.

Circuit Notes:

Servo brown wire to GND
Servo red wire to 5V
Servo orange wire to Digital Output 9

M. Perone, WVU Psyc Dept, Feb 24, 2017
*/

#include <Servo.h> //invoke servo librarry

Servo myservo;//create servo object to control a servo

int degreeChange = 5; // for incrementing or decrementing servo position
int pauseDuration = 200; // time between increments/decrements

void setup() {
Serial .begin(9600);
myservo.attach(9);//attach the servo on pin 9 to servo object
myservo.write(0);//back to 0O degrees
delay(2000);//wait a couple seconds

void loop() {

// this for-loop increments the degrees from 0 to 180

for (int degrees = 0; degrees < 180; degrees = degrees + degreeChange) {
myservo.write(degrees); // move the servo to the designated postion
Serial.print("Up "™); // send position info to serial monitor
Serial .println(degrees);
delay (pauseDuration);

¥

// this for-loop decrements from 180 to O

for (int degrees = 180; degrees > 0; degrees = degrees - degreeChange) {
myservo.write(degrees); // move the servo to the designated position
Serial .print(*'Down '); // send position info to serial montior
Serial.printin(degrees);
delay (pauseDuration);

73

Photocell
/*
Photocell

This sketch performs an analog read on a photocell - also known

as a photoresistor - connected to Arduino Analog Pin 0. It converts
the raw reading to voltage. The raw reading can be from 0-1023 and
the voltage from 0.0 to 5.0. The sketch sends the raw reading and the
voltage to the serial port twice per second.

A photoresistor is a light-sensitive variable resistor. As the intensity

of the light falling on the photoresister is raised, the device®s resistance is
lowered. This in turn leads to an iIncrease in the voltage received from

the device. So there is a direct relation between the light intensity

and the voltage.

A photocell is wired In the same way as a potentiometer. One lead is connected to
5V. The other lead is connected to an analog input (AO in the sketch) AND to
Ground via a 1K-ohm resistor. The only difference is this: With a potentiometer
Resistance is controlled by turning a knob, but with a photoresistor, resistance
is controlled by the intensity of light.

Circuit notes:

1. Photocell Lead 1 to 5v (lead numbering is arbitrary)
2. Photocell Lead 2 to Analog Input O
3. Photocell Lead 2 to GND via 1K resistor

M. Perone, WVU Psyc Dept, Mar 19, 2017
*/
int lightPin = 0; // Arduino analog input to receive photocell

void setup() {
Serial .begin(9600); // set up serial communication

}

void loop(Q {
int reading = analogRead(lightPin); // read photocell
float photoV = (reading * 5.0) / 1023.0; // convert to voltage
Serial .print(*Raw: "); // show the results...
Serial .print(reading);
Serial.print(’, Volts: ™);
Serial .printin(photoV);
delay(500); // wait a bit

74

Photocell Response Count
/*
Photocell _Response_Count

This sketch increments a response counter every time a photobeam is broken.
The circuit should have a white LED aimed at a photocell, without enough
space in between them to allow a piece of cardboard to be swiped through the
space. If the photocell reading drops sufficiently a reponse is counted. The
threshold for counting a response is in the constant “detectionThreshold”.

The code also has some debouncing code. This is because as an object passed
Between the LED and the photocell, more than one reduced reading may be
detected. This problem is prevented by ignoring changes in the readings that
occur '"too soon" after the last recorded change. The constant “debouncelnterval*®
defines what is '"too soon."

A photocell is wired in the same way as a potentiometer. One lead is connected to
5V. The other lead is connected to an analog input (AO in the sketch) AND to
Ground via a 1K-ohm resistor.

Circuit notes:

1. Photocell Lead 1 to 5v (lead numbering is arbitrary)
2. Photocell Lead 2 to Analog Input O
3. Photocell Lead 2 to GND via 1K resistor
4. LED Positive Lead (the longer one) to Digital Output 8
5. LED Negative Lead (the shorter one) to GND via a 330-ohm resistor.
M. Perone, WVU Psyc Dept, Mar 19, 2017
*/

Listing continues...

75

Photocell Response Count cont’d

int lightPin = 0; // analog input receiving photocell

int lightSource = 8; // digital output to control LED

int oldReading; // to keep tack of last photocell reading

int newReading; // to store current photocell reading

const int detectionThreshold = 150; // required reduction in reading to count
response

int responseCounter; // to count responses

int lastResponseTime; // for debounce

const int debouncelnterval = 300; // for debounce

void setup() {
pinMode(lightSource, OUTPUT); // set output pin mode
digitalWrite(lightSource, HIGH); // turn on light source
delay (100);// give it time to power up
// next 2 lines: initialize photocell reading variables
newReading = analogRead(lightPin); // read photocell
oldReading = newReading;
Serial .begin(9600); // set up serial communication

}

void loop() {
newReading = analogRead(lightPin); // read photocell
int difference = abs(oldReading - newReading);
iT ((difference > detectionThreshold) && ((millis() - lastResponseTime) >=
debouncelnterval)) {
// pay heed if reading has changed enough AND enough time has passed since last
change
if (newReading < oldReading) { // and because reading has dropped, count a
response
responseCounter = responseCounter + 1; // increment the counter
// Next 6 lines: Send data to serial port
Serial .print('old: "™);
Serial .print(oldReading);
Serial.print(’, New: ");
Serial .print(newReading);
Serial.print(’, Responses: ");
Serial .printIn(responseCounter);
}
// save reading and time of this recorded change
oldReading = newReading;
lastResponseTime = millis(Q);

76

Two Buttons

The circuit for this sketch is a simple extension of the circuit for “Count Button Presses.” You just add another
button!

/*
Two Buttons

This sketch scans 2 digital input ports and detects debounced inputs. A
correction is made for possible bounce in the button®s electical contacts. All of
the variables that are used to differential a button®s status (low or high), time
the debouncing correction, or count presses have been declared as 2-element
arrays. The first element is labeled 0, and the second is labeled 1. Note also
the use of the "for"™ control structure.

Circuit Notes:
Button 1: Connect one pin to GND on your breadboard. Connect the other pin to
Digital Pin 8

Button 2: Connect one pin to GND on your breadboard. Connect the other pin to
Digital Pin 9

M. Perone

WVU Psychology Dept

February 16, 2017
*/

Listing continues...

77

Two Buttons cont’d

// declare variable for counting button presses
int respCount[2];

// declare variables to calculate response rate in this session
long sessionStartTime;

// declare variables for keeping track of the button®s state
int newButtonState[2];
int oldButtonState[2];

// declare variable and constant for debouncing code
int lastButtonChangeTime[2];
const int debouncebelay = 5; // 5-ms delay for debouncing

// set the response pins as D8, D9
int responsePin[2] = {8,9};

void setup() {
// set the response pin to input with internal pullup
pinMode(responsePin[0], INPUT_PULLUP);
pinMode(responsePin[1], INPUT_PULLUP);
// connect to serial port
Serial .begin(9600);
// record start time of this session
sessionStartTime = millisQ;

}
void loop(Q) {

// *** LOOK FOR A BUTTON PRESS **=*
// read the state of the pin
for (int x = 0; x < 2; x++) {

newButtonState[x] = digitalRead(responsePin[x]);
// is the state changed since our last read AND at least the debounce
// delay has passed?
iT ((newButtonState[x] != oldButtonState[x]) &&
((millis(Q) - lastButtonChangeTime[x]) >= debounceDelay)) {
// Yes, the button state has changed and enough time has passed to pay
// attention to the change
// make a note of the change in state
oldButtonState[x] = newButtonState[x];
// and make a note of the time of this change
lastButtonChangeTime[x] = millisQ;
// is the new state of the button
// LOW, i.e., button is pressed?
if (newButtonState[x] == LOW) {
// yes, button is pressed, count it
respCount[x] = respCount[x] + 1;
// and display it on the LCD
Serial.print("Button A: ");
Serial .print(respCount[0]);
Serial .print(" Button B: ");
Serial .printin(respCount[1]);

78

Stepper Sweep
/*
Stepper_Sweep

This sketch moves a 28BYJ-48 stepper motor through its full range of
motion, clockwise and counter-clockwise, with a 2-s pause between
each sweep. The 28BYJ-48 stepper motor requires 2048 steps for an
entire revolution when using the standard Arduino stepper ibrary.
A speed of 12 rpm works eliably in both directions in my testing.

An informative guide to this stepper motor, with links to advanced
stepper libraries, is here: https://arduino-info.wikispaces.com/Smal lSteppers

Circuit Notes:

Our stepper motor comes with printed circuit board that interfaces it with the
Arduino. Plug the motor into the board (the connector will fit only one way),
then make the following connections to the Arduino:

Along one edge of the circuit board are 4 pins for power. A jumper
covers the rightmost pair, leaving the first two available. Connect:
"-'" to GND

"+ to 5V

Along another edge are 4 input pins. Connect them to the Arudino as follows:
IN1 to Digital 8
IN2 to Digital 9
IN3 to Digital 10
INA to Digital 11

M. Perone, WVU Psyc Dept, Mar 3, 2017
*/

#include <Stepper.h> // stepper library

const int stepsPerRevolution = 2048; // steps per revolution, empirically derived
const long rpm = 12; // revolutions per minute, assigned by trial and error

// initialize the stepper library on pins 8 through 11; note that the syntax

// for this instruction is:

// Stepper nameOfStepperObject (stepsPerRevolution, PinTolnl, PinToln3, PinToln2,
PinToln4)

Stepper myStepper(stepsPerRevolution, 8, 10, 9, 11);

void setup() {
myStepper.setSpeed(rpm); // set stepper speed

void loop(Q) {
myStepper.step(2048); // clockwise

delay(2000);
myStepper .step(-2048); // counter-clockwise
delay(2000);

https://arduino-info.wikispaces.com/SmallSteppers

79

Stepper by Steps

/*
Stepper_by Steps

This sketch moves a stepper motor by the number of steps designated

by the user via the serial communications interface. Our motor, the
ubiquitous 28BYJ-48 requires 2048 steps for an entire revolution when
using the standard Arduino stepper library, and a speed of 12 rpm works
reliably in both directions in my testing.

An informative guide to this stepper motor, with links to advanced
stepper libraries, is here: https://arduino-info.wikispaces.com/SmallSteppers

Circuit Notes:

Our stepper motor comes with printed circuit board that interfaces it with the
Arduino. Plug the motor into the board (the connector will fit only one way),
then make the following connections to the Arduino:

Along one edge of the circuit board are 4 pins for power. A jumper
covers the rightmost pair, leaving the first two available. Connect:
- to GND

"+ to 5V

Along another edge are 4 input pins. Connect them to the Arudino as follows:
IN1 to Digital 8
IN2 to Digital 9
IN3 to Digital 10
IN4 to Digital 11

M. Perone, WVU Psyc Dept, Feb 25, 2017, Revised Mar 3, 2017
*/

#include <Stepper.h> // stepper library

const int stepsPerRevolution = 2048; // steps per revolution, empirically derived
const long rpm = 12; // revolutions per minute, assigned by trial and error

// initialize the stepper library on pins 8 through 11; note that the syntax

// for this instruction is:

// Stepper nameOfStepperObject (stepsPerRevolution, PinTolnl, PinToln3, PinToln2,
PinToln4)

Stepper myStepper(stepsPerRevolution, 8, 10, 9, 11);

void setup() {
Serial .begin(9600);// set up serial port
Serial.setTimeout(20); // 10 ms to read string
myStepper.setSpeed(rpm); // set stepper speed

void loop(Q) {
it (Serial.available() > 0) { // act only if instructed
String instruction = Serial.readString(); // get the instruction
int numberOfSteps = instruction.tolnt(); // convert string to an integer
Serial.print(*Stepping: ");
Serial .print(numberOfSteps);
Serial .printin(’" times.™);
myStepper.step(numberOfSteps); // position the stepper

https://arduino-info.wikispaces.com/SmallSteppers

80

Stepper by Degrees

The dial and pointer for this sketch are included as an appendix
/*

Stepper_by Degrees

This sketch positions a stepper motor at any degree position between

0 and 360 (with O and 360 referring to the same position). The desired
position is specified by the user via the serial communications interface.
Our motor, the 28BYJ-48, requires 2048 steps for an entire revolution. This
sketch translates steps to degrees. There is some

error in this because
2048 is not wholly divisble by 360, but the results are not bad. With regard
to motor speed, 1

in my tests 12 rpm works reliably in both directions.

To test the accuracy of the positioning, you will need a circular meter dial
showing degrees, and a pointer that is affixed to the motor
in the Appendices.
and then add the pointer.

. These items are
Cut out the meter face, afix to the motor

An informative guide to this stepper motor, with links to advanced
stepper libraries, 1

is here: https://arduino-info.wikispaces.com/Smal ISteppers
Circuit Notes:

Our stepper motor comes with printed circuit board that interfaces it with the
Arduino. i

Plug the motor into the board (the connector will fit only one way)
then make the following connections to the Arduino:

"-" to GND

Along one edge of the circuit board are 4 pins for power. A jumper
covers the rightmost pair, leaving the first two available. Connect
+" to 5V

Along another edge are 4 input pins. Connect them to the Arudino as follows:
IN1 to Digital 8

IN2 to Digital 9

IN3 to Digital 10

INA to Digital 11

M. Perone, WVU Psyc Dept, Feb 25, 2017, Revised Mar 3, 2017
*/

Listing continues...

W \\\ qutll \H‘I|il (MHI / "

300 310 320 33,

e

\\
o

)
W

ol
,\\\\\\\'\

ot
\\\\\\\\

ulnuhnltll\

0s Oy

81

Stepper by Degrees cont’d

#include <Stepper.h> // stepper library

const int stepsPerRevolution = 2048; // steps per revolution, empirically derived
const long rpm = 12; // revolutions per minute, assigned by trial and error

// initialize the stepper library on pins 8 through 11; note that the syntax

// for this instruction is:

// Stepper nameOfStepperObject (stepsPerRevolution, PinTolnl, PinToln3, PinToln2,
PinToln4)

Stepper myStepper(stepsPerRevolution, 8, 10, 9, 11);

int oldDegrees; // to track changes in degree settings

int newDegrees; // to track changes in degree settings

void setup() {
Serial .begin(9600);// set up serial port
Serial.setTimeout(20); // 20 ms to read string, more than enough
myStepper .setSpeed(rpm); // set stepper speed

void loop(Q) {
if (Serial.available() > 0) { // act only if instructed

String instruction = Serial.readString(); // get the instruction

newDegrees = instruction.tolnt(); // convert string to an integer

iT ((newDegrees != oldDegrees) && (newDegrees >= 0) && (newDegrees <= 360)) {
// act only if the new position differs from the old, and the new position
// is between 0 and 360 degrees
// next line: calculate the steps needed to change the motor®s position
double change = ((newDegrees - oldDegrees) / 360.0) * stepsPerRevolution;
int numberOfSteps = int(change); // convert to an integer
myStepper .step(numberOfSteps); // position the stepper
Serial.print (""'New: "); // tell us about it...
Serial.print(newDegrees);
Serial.print(”, Old: ");
Serial .print(oldDegrees);
Serial.print (', Change: ");
Serial.print(change);
Serial.print(’, Steps: ");
Serial.printin(numberOfSteps);
// update old degrees. In the special case in which the user has asked
// to position the motor at 360 degrees, convert to 0O (because 0 and 360
// refer to the same position, and it simplifies cacluations if we refer
// to that position in a consistent way.
ifT (newDegrees == 360) {

oldDegrees = 0;

} else {

oldDegrees = newDegrees;

}

}
}
}

82

Temperature Humidity Monitor
/*
Temperature_Humidity Monitor

This sketch uses the Simple DHT library to take periodic readings of
temperature and humidity from a DHT11l sensor. The sensor has been
mounted to a small circuit board with three pins as described below.

Circuit Notes:

These notes apply to the circuit board in the Elegoo Super Starter Kit.
Hold the circuit board with the senor facing you. The three pins from left
to right should be wired as follows:

Left pin (data pin) to Arduino Digital 2

Center pin to 5V

Right pin to GND

M. Perone, WVU Psyc Dept, Mar 20, 2017
*/

#include <SimpleDHT.h> // reference library

SimpleDHT11 myDHT1l1lsensor; // library requires that we name our sensor
int pinForSensor = 2; // sensor data pin connected to Digital Input 2
byte tempC; // library requires byte to receive Celsius temp

byte humidity; // library requires byte to receive humidity

float tempF; // to save Celsius to Farenheit conversion

long sampleCount; // to count the number of readings

void setup() {
Serial .begin(9600); // start serial communcations

}

void loop(Q) {
// next lines: read the sensor at pinDHT11l and receive temperature and
// humidity. IT results are NULL, the function is True and we should
// print an error message and keep trying to read the sensor.
it (myDHT1llsensor.read(pinForSensor, &tempC, &humidity, NULL)) {
Serial.print("Attempt to read DHT11l failed. Retrying.");
}
else {
sampleCount = sampleCount + 1; // increment counter
tempF = ((tempC * 1.8) + 32.0); // convert Celsius to Farenheit
Serial .print(sampleCount);
Serial.print(':);
Serial .print(tempC);
Serial .print(*" C, ");
Serial .print(tempF);
Serial.print(" F, ")
Serial.print((int)humidity); Serial.printinC" % humidity');
delay(2500); // read the sensor every 2.5 seconds

83

Remote Signal Reception
/*
Remote_Signal_Reception

This sketch demonstrates receiving IR codes with the IRrecv function of the
IRremote library. The sketch is designed to receive signals from the Elegoo
Remote control from the company®"s "Super Starter Kit" using the IR
detector/demodulator in the kit. The signal pin of the board must be connected
to the input "receivePin', which iIs assigned to Digital 11 in this particular
sketch. The received code, in hexadecimal format, is sent to the serial monitor.

I have tried several other remotes lying around my home, and they work with
the IR detector/demodulator board and this sketch.

The IRremote library was developed by Ken Shirriff, http://arcfn.com
Office Website for the IRremote library: http://z3t0.github.io/Arduino-IRremote/
Documentation here: https://github.com/z3t0/Arduino-IRremote/wiki

Additional information here: https://arduino-info.wikispaces.com/IR-RemoteControl
This website warns: "If you have a late version of Arduino with a library
IRRobotRemote, it may conflict and you may have to remove that library. Make
sure to delete Arduino_Root/libraries/RobotlRremote, where Arduino_Root refers to
the install directory of Arduino. The library RobotlRremote has similar
definitions to IRremote and causes errors."

Circuit Notes: On the IR board, there are 3 pins labeled G, R, Y.
Connect as follows:

G to GND
R to 5V
Y to Arduino Pin 11 (this is the signal)

M. Perone, WVU Psyc Dept, Mar 4, 2017
*/

#include <IRremote.h> // library

int receivePin = 11; // receiver connected to Digital Pint 11
IRrecv irrecv(receivePin); // connect

decode results signal; // create object for received signal

void setup(Q) {
Serial .begin(9600); // Set up serial communications
irrecv.enablelRIn(); // Start the receiver

}

void loop() {
if (irrecv.decode(&signal)) { // proceed only if we have a signal
Serial.printin(signal.value, HEX); // display it in hexadecimal format
delay (250); // pause before reactivating receiver, to avoid extra signals
// from the noisy Elegoo remote we are using
irrecv.resume(); // Get ready to receive the next value

http://arcfn.com/
http://z3t0.github.io/Arduino-IRremote/
https://github.com/z3t0/Arduino-IRremote/wiki
https://arduino-info.wikispaces.com/IR-RemoteControl

84

R

/*

*/
#i
in
IR
de

VO

}

VO

Lis

emote Signal Decoding Elegoo

Remote_Signal_Decoding_Elegoo

This sketch demonstrates receiving IR codes with the IRrecv function of the
IRremote library. As each code is received, the sketch returns, via the serial
port, the name of the button on the Elegoo remoted control that was pressed.

The sketch is designed to receive signals from the Elegoo remote control from the
company®s "'Super Starter Kit" using the IR detector/demodulator in the kit. The
signal pin of the board must be connected to the input "receivePin', which is
assigned to Digital 11 in this particular sketch. The received code, iIn
hexadecimal format, is sent to the serial monitor.

The IRremote library was developed by Ken Shirriff, http://arcfn.com
Office Website for the IRremote library: http://z3t0.github.io/Arduino-IRremote/
Documentation here: https://github.com/z3t0/Arduino-I1Rremote/wiki

Additional information here: https://arduino-info.wikispaces.com/IR-RemoteControl
This website warns: "If you have a late version of Arduino with a library
IRRobotRemote, it may conflict and you may have to remove that library. Make
sure to delete Arduino_Root/libraries/RobotIRremote, where Arduino_Root refers to
the install directory of Arduino. The library RobotlRremote has similar
definitions to IRremote and causes errors."

Circuit Notes: On the IR board, there are 3 pins labeled G, R, Y. Connect:
G to GND; R to 5V; Y to Arduino Pin 11 (this is the signal)

M. Perone, WVU Psyc Dept, Mar 15, 2017

nclude <IRremote.h> // library

t receivePin = 11; // receiver connected to Digital Pint 11
recv irrecv(receivePin); // connect

code_results signal; // create object for received signal

id setup(Q {
Serial .begin(9600); // Set up serial communications

irrecv.enablelRIn(); // Start the receiver

id loopQ {
ifT (irrecv.decode(&signal)) { 7/ proceed only if we have a signal

// compare the received value against the various possible valiue
// (expressed in hexademical numerals)
switch (signal.value) {
case OxFFA25D:
Serial.printIn(""Power™);
break;
case OxFF629D:
Serial.printin("Vol+");
break;
case OxFFE21D:
Serial .printIn(""Func/Stop™);
break;
case OxFF22DD:
Serial.printin("Rewind™);
break;

ting continues...

http://arcfn.com/
http://z3t0.github.io/Arduino-IRremote/
https://github.com/z3t0/Arduino-IRremote/wiki
https://arduino-info.wikispaces.com/IR-RemoteControl

Remote Signal Decoding Elegoo cont’d

case OxFFO2FD:
Serial.printin(""Play/Stop'™);
break;

case OxFFC23D:
Serial .printIn('Fast Forward™);
break;

case OXFFEO1F:
Serial.printin('Down'™);
break;

case OxFFA857:
Serial.printin('Vol-"");
break;

case OxFF906F:
Serial.printIn('Up™);
break;

case OxFF6897:
Serial .printIn(’'0™);
break;

case OxFF9867:
Serial.printIn("EQ™);
break;

case OxFFBO4F:
Serial .printIn(’'ST/Repeat™);
break;

case OxFF30CF:
Serial.printin(’'1™);
break;

case OxFF18E7:
Serial.printIn(’2"™);
break;

case OxFF7A85:
Serial .printIn("3"™);
break;

case OxFF1O0EF:
Serial .printIn("4™);
break;

case OxFF38C7:
Serial .printIn("5"™);
break;

case OxFF5AAS5:
Serial .printin('6™);
break;

case OxFF42BD:
Serial .printIn(’'7");
break;

case OxFF4AB5:
Serial.printin('8™);
break;

case OxFF52AD:
Serial.printIn('9™);
break;

delay (250); // pause before reactivating receiver, to avoid extra signals
// from the noisy Elegoo remote we are using
irrecv.resume(); // get ready to receive the next value
}
¥

86

Transistor to Relay

/*
Transitor_to_Relay

This trivially simple sketch is designed to accompany a relatively
sophisticated circuit. The sketch simply turns a digital output on

and off. The circuit is designed to illustrate how to use a transistor
to operate a relay, and to use the relay to control something. 1In our
circuit, we will used LEDs, but we could be controlling motors or other
more interesting stuff.

M. Perone, WVU Psyc Dept, Mar 26, 2017
*/

const int relayPin = 3; // let"s use Digital Pin 3
const int onPause = 1000; // relay will be on this long
const int offPause = 3000; // relay will be off this long

void setup(Q {
pinMode(relayPin, OUTPUT);

void loop(Q) {
digitalWrite(relayPin, HIGH); // turn the relay on
delay(onPause); // wait
digitalWrite(relayPin, LOW); // turn the relay off
delay(offPause); // wait

}

Transistor to Relay cont’d

+
[}

2481

. XL
N

........OII..‘
,LouTnpJuy EEX¥

ONDEQ

To operate the transistor with the Arduino, connect Transistor Lead 2 (the
“base” of the transistor) to Arduino Digital 3 via a 330-ohm resistor.

To arrange the current to be switched by the transistor, (a) connect
Transistor 3 (the “collector”) to 5V, and (b) connect Transistor 1 (“emitter”)
to Relay 1 (the “operate” pin of the relay). When the Arduino puts 5V on
transistor base, the collector and emitter will be connected and 5V will flow
to the operate pin of the relay.

Connect Relay 3 (the other operate pin) to GND. When the transistor
applies 5V to the Pin 1 of the relay, current will flow through the coil
because the other side of the coil (Pin 3) is connected to GND. An
electromagnetic field will move the relay’s switch.

To arrange for current to switched by the relay: (a) connect Relay 2
(Common) to 5V, (b) connect Relay 4 (Normally Open) to the long lead
(positive lead) of the green LED, and (c) connect Relay 5 (Normally Closed)
to long lead of red LED.

Connect the short leads of both LEDs to GND via a 220-ohm resistor.

87

Parts
0 Relay
O Transistor
0 1 Resistor @ 330 ohms
O 2 Resistors @ 220 ohms
O RedLED
O Green LED
00— —0
& g
— 5

Circuit diagram for the Songle SRD-
05VDC-SL-C relay, as viewed from the
top of the device. Pinout, counter-
clockwise from top left: 1. Operate coil
(apply 5V), 2. Common of switch, 3.
Operate coil (apply GND), 4. Normally
open side of switch, 5. Normally closed
side of switch.

2N2222

COLLECTOR
3

BASE
4 TO-92
23 1
EMITTER

Our transistor. To identify the pins,
orient the transistor so the flat side is
facing you. Then, from left to right, are
the 1. Emitter, 2. Base, and 3. Collector.

When the Arduino sketch turns on the transistor, the transistor operates the relay, and the relay turns on the
green led (via the Normally Open pin of the relay). When the sketch turns off the transistor, the relay returns to

IM

it resting or “norma

state, and the red LED is lit (by current flowing through the Normally Closed pin).

88

Optocoupler Test

An optocoupler — also known as an “optoisolator” —is a transistor

: i . . A [1] [6]8
that is operated by light rather than by the application of an electric
current. This allows you to have two power sources communicate ¢ 2 Elc
safely — when, for example, relatively high-voltage devices in the lab L ’< \
must be sensed by the low-voltage Ardunio. It can be used to NG [3] 7]E \ \
protect the Arduino from high voltages.

Here is the circuit diagram of the 4N25 optocoupler, a widely used model, alongside a drawing of the chip. To
orient the chip, look for a little circle in one corner; this marks Pin 1. (It won’t be as easy to see as the one in the
drawing.) From there, the pins are numbered sequentially in counter-clockwise order. Passing current across
Pins 1 and 2 lights an internal infrared LED. This causes the internal phototransistor to close the circuit between
Pin 4 (the transistor’s “emitter”) and Pin 5 (the “collector.”) The infrared LED can handle relatively high voltages
(with an appropriately sized resistor in series with it), so will run the high-voltage output of lab devices across

Pins 1 and 2. We will run the Arduino Uno’s 5V current across Pins 4 and 5.

In the experimental psychology lab, operant conditioning chambers commonly are supplied with 24V to 28V.
This is used to operate stimulus lamps and electromagnetic devices such as pellet dispensers. The 28V also is
used to run through switches that are closed when, for example, a rat presses a lever. To count the presses, our
Arduino needs to sense these switch closures. The problem is that the Arduino would be destroyed if we applied
24V to one of its input pins. The optocoupler solves the problem. On the lab side, Pin 1 is connected to the
positive pole of the 24V lab power source via a resistor. Pin 2 is connected to one side of the lever’s switch; the
other side of the switch is connected to the GND pole of the 24V supply. When the rat presses the lever, 24V
current flows across Pins 1 and 2 and the infrared LED is turned on. On the Arduino side, we need to apply GND
from the Arduino’s own power supply to
an input pin in order for the Arduino to
sense the input. Pin 4 of the optocoupler
is connected to GND from the Arduino,
and Pin 5 is connected to one of the
Arduino’s digital input pins. When the
circuit across Pins 4 and 5 is closed, the
Arduino’s input pin is set LOW and the
input is detected.

ae e eas +
s s s

When the rat presses the lever, 24V of lab
power turns on the infrared LED, which
turns on the phototransistor, which allows
the Arduino’s own 5V power to flow back
to its input pin. The two sources of power
never touch. They are “coupled” with light
from the LED — they are opto-coupled.

4N25 optocoupler To illustrate the use of the optocoupler in
Push button our workshop, we use a 9V battery in place
220-ohm resistor of the 24V lab power supply, as illustrated
1K-ohm resistor here. Note that the left power rails of the
9V battery breadboard are connected to the battery,
and the right rails are connected to the
Arduino’s power.

O O O0OO0OO0OO0Oo

Battery leads

89

Optocoupler Test cont’d
/*
Optocoupler Test

This trivial sketch is designed to turn an LED on or off depending on
whether a button is pressed or released. It is intended to test a
circuit that is a bit more sophisticated: one in which an optocoupler
is used to link a button powered at 9V with the Arduino input pin. IFf
you wired the 9V output of the button directly to the Arduino®"s pin,
you would damage it. The optocoupler safely isolates the high voltage
from the low-voltage that powers the Arduino. (From he Arduino®s
standpoint, 9V is high voltage. This setup with a 9V battery is
designed to mimics common laboratory experiments in which 28V devices
must provide input to the Arduino.

Circuit Notes:

The 4N25 Optocoupler has six pins. Pin 1 is marked with
a dot on the chip. The numbering system is counter-
clockwise: 1 6
2 5
3 4
Our circuit uses four pins connected as follows:
1 to +9V via a 1K-ohm resistor
2 to one side of button

4 to Arduino GND (via breadbroad, please)
5 to Arduino Digital Pin 7

The other side of the button iIs connected to -9V.
Arduino Digital Pin 6 is connected to the positive lead of the LED
Negative lead of LED is connected to Arduino GND via 220k-ohm resistor

M. Perone, WVU Psyc Dept
April 12, 2017

*/

const int button = 7;

const int LED = 6;

void setup() {
pinMode(button, INPUT_PULLUP); // input in pullup mode
pinMode(LED, OUTPUT); // output

}

void loop(Q) {
it (digitalRead(button) == LOW) {
digitalWrite(LED, HIGH); // button pressed, tunr on LED
} else {
digitalWrite(LED, LOW); // button released, turn off LED
}
}

90

Analog 10 with PWM

‘/’k

Analog 10 with PWM

This sketch reads a potentiometer, converts the result to a number between 0 and
255, and uses the new number to control the duty cycle of a pin capable of Pulse
Width Modulation that is connected to an LED. By adjusting the pot, the user
changes the brightness of the LED. Note that small variations in the pot reading
are ignored. The sketch also converts the potentiometer reading to voltage.
Circuit Notes:

LED short lead to GND via 220-ohm resistor

LED long lead to Arduino Pin 3

10K Pot Side Pins: one to GND, one to 5V

10K Pot Middle Pin to Arduino Pin AO

M. Perone, WVU Psyc Dept, April 18, 2017

*/

Listing continues...

e o 0 0
L)
e e 0 0

|

. s a0
S & & & 8 5 2 8 8 B 8

2dS)I

. XL
|l

e s 8 0
L B B

Loutnpuy Xy

LR B B
LR B B
. 8 & 2 2 2 2 8 0 0 0 00000

|
O

e o 0 0 0 0 0 0 0
e & 8 8 0 0 0 00

.

® & & & 5 & 5 5 5 & 0 0 8 00

® 8 8 0 0 0 0 0 0 0 0 0 0 0
e 8 8 8 8 8 0 0 8 00000 00

.
.

a s 8 00
LR B B B

® & & & & 0 8 8 2L % 8 8 8 s 8 e 08800000
S 5 & 5 & 5 8 5 5 B s s

91

Analog 10 with PWM cont’d

int oldPot; // to store old reading from pot

int newPot; // to store new reading from pot

int difference; // to store the difference in readings

float potVolts; // to store voltage with decimal fraction
const int analogPin = AO; // could have said 14 instead of AO

void setup() {
Serial .begin(9600); // set up serial communications

¥

void loop() {
newPot = analogRead(analogPin); // read pin connected to 10K pot
difference = newPot - oldPot; // calculate difference between old and new
difference = abs(difference); // convert to absolute difference
if (difference > 3) { // if the difference is 4 or more (range is 0-1023)...
int dutyCycle = map(newPot, 0, 1023, 0, 255); // convert to duty cycle for PWM
analogWrite(3, dutyCycle); // adjust brightness of LED via PWM
// For fun, let"s convert the newPot value to voltage
potvVolts = map(newPot, 0, 1023, 0, 500); // convert pot reading to volts x 100
potVolts = potVolts / 100.0; // convert to voltage expressed to nearest .01 V
// Now send numbers to serial port
Serial .print("Analog Input: ");
Serial .print(potVolts);
Serial.print (" volts. LED brightenss: ");
Serial.printin(dutyCycle);
oldPot = newPot; // the new reading is now the old reading

92

Part /:
Exercises

A later edition of this work may have a more systematic progression of exercise (easy to hard, simple to
complex). These, however, are in no particular order.

1. Modify the Blink sketch by (a) changing the delay values and (b) changing the output pin (and associated
wiring).

2. Build a circuit with a button and an LED. Write a sketch that: (a) Counts button presses. Each press, no
matter how long in duration, increments the counter once. (b) Includes debouncing code. (c) After every 5
presses, turns on the LED for 2 seconds. During this time, button presses are ignored.

3. Modify the sketch in Exercise 2 to add data transmission through the serial port: (a) After each press, send
the current value of the counter in this format: Responses: 1. (b) When the LED is turned on, send a
message to the serial port indicating that the LED has been turn on, and include a count of the LED operations:
LED 1..LED 2 ..etc.

4. Modify the sketch in Exercise 3 to give the user some control over the sketch: (a) When the user sends a
number to the Arduino over the serial port, that number is used to decide how many button presses are
required to light the button. If, for example, the user sends ‘25’ then the LED will be turned on after every 25
responses. For guidance, look at the sketch entitled “Reading Serial Strings as Parameters” in Part 6.

5. Build the circuit shown here.
A 10-k ohm potentiometer + =
provides input to Pin AQ, a
button provides input to Pin 2,
and Pin 6 outputs to an LED.
Write a sketch that receives
input from the potentiometer

2d531

on Pin A0 and displays the raw reeead RPGow LL I |

result on the serial monitor. el Baaay TR

You will need to use the ALE88 DRdak =

analogRead() function. You ceeae LRI Sjg

may wish to impose a delay of a4 35454 =
: SEREREEEE =

500 milliseconds or so after bl el 1 ZilF

every display — otherwise, you $ mmm— B: 253 Oz

sketch will be printing like wild. e 1 $9994 g

6. Using the circuit shown R depon Bosodadbe: b

here, modify the sketch in 3.9 222 gy -

Exercise 6 so that information .o ceses . \j

is sent to the serial monitor e e

only if the raw input value on
AO changes by at least 5. In this sketch, no delay should be needed.

7. Using the circuit shown here, write a sketch that receives input from the potentiometer on Pin AQ, maps the
input value to a number between 0 and 255, and uses that number to vary the brightness of the LED. You will
need to use the Pulse Width Modulation capability of Pin 6 and this is accomplished with the analogWrite()
function.

93

8. Using the circuit shown on the previous page, wite a sketch that receives input from the button on Pin 2. The
sketch should count the button presses and, using analogWrite(), vary the brightness of the LED depending on
the button count, as follows:

0=0

1=7

2=15
3=32
4=63
5=127
6 =255

After 6 presses are counted and highest brightness is achieved, the next button press should reset the counter
to 0 so the process can begin anew.

9. This exercise uses the Elegoo remote control, IR detector/demodulator, and an RGB LED: Build a suitable
circuit and write a sketch so that pressing the 1, 2, and 3 buttons on the remote causes the red, green, and blue
elements of the RGB LED to turn on and off. For example, pressing 1 should turn on red and pressing it again
should turn off red (and over and over and over again). Pressing 2 should have the same effects on green, and
pressing 3 should have the same effects on blue. Hint: You will need variables that keep track of the on/off state
of the red, green, and blue elements of the LED. (I personally would use Boolean variables, but other
approaches are equally valid.)

10. Part 6 includes a sketch called “Two Buttons.” It uses arrays! Add two more buttons to the circuit described
in the sketch, and modify the sketch so that it handles four buttons instead of two. This is easy if you
understand how to use arrays.

11. Build a circuit that controls
the red, green, and blue

-) elements of an REG LED with
444 ' ; three PWM-capable pins. Be

34 . sure to put a 220-ohm resistor
68 :E in series with each element of
y :g:— a e the LED. Using for I(?ops, write
b R .\"'——'—. B a sketch that: (a) raises the
se s ' LI brightness of the red element
0944 :E = from O to 255 and then lowers
el (e e it back to 0. You will need to
$399¢ I 4941 o 8 delay for a while between
seeea ceeue E\} iy each change in brightness,
poestad (R oa e ;Z S -5 otherwise it will happen too
pened [Baaae o QU4 fast and you won’t see much
seeae seeee § NG of anything. You also will have
L. E : : E E E E E E E .. 6 -.g to decic':le what step size to use
53 R eI 93 as you increment and
b b 291 9 decrement the brightness. |
- M6 s90s4 < suggest that you put the delay

and step in variables at the top
of the sketch so you can easily
play with them. (b) For the green element, do the same as you did for the red. Use the same delay and step
values. (c) For the blue, do the same as you did for the other colors. The final product should look like this:
First, the red goes gradually from dark to full brightness and then back to dark. Next, the green does the same.
Third, the blue does the same. And then we start over with the red.

94

Resources

www.arduino.cc

Tutorials

You can find the official reference for
Arduino programming at
www.arduino.cc/en/Reference/HomePage

And you can find an excellent set of tutorials
at www.arduino.cc/en/Tutorial/HomePage

Reference Language | Libraries | Comparison | Changes

Language Reference

Arduino programs can be divided in three main parts: structure, values (variables and constants), and

functions.

Structure Variables Functions

= INPUT | OUTPUT | INPUT_PULLLIP

BUILT-IN EXAMPLES

them click on the toclbar menu: File > Examples.

TUTORIALS ON ARDUINO PROJECT HUB

rio. Getinspirea oy a

Examples in the Arduino IDE

’
Don’t overlook the example sketches [e sprida | Arduino 182

that come with your Arduino IDE; File Edit Sketch Tools Help

they illustrate ways to tackle a wide New Ctrl+N
range of programming tasks. In the Open.. Crl+0
File menu, click Examples and you are Open Recent
on your way. Sketchbook »
Examples
Close Ctrl+W
Save Ctrl+5
Save As.. Ctrl+5hift+5

Page Setup Ctrl+Shift+P
Print Ctrl+P

Preferences Ctrl+Comma

Quit Ctrl+Q

e T e]
delay (1000}
digitalWrite (13,1L0W)
delayMicroseconds (1000)

~1 o on

HOHE T

wom

iy
Built-in Examples
01.Basics
02.Digital
03.Analog
04.Communication
05.Control
06.5ensors
07.Display
08.5trings
09.UsSB
10.5tarterkit_BasicKit
11.Arduinol5P

Examuples for any board

BlinkWithoutDelay
Button

Debounce
DigitallnputPullup
StateChangeDetection
toneKeyboard
toneMelody
toneMultiple

tonePitchFollower

http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Tutorial/HomePage

Rogelio Escobar’s Website
http://analisisdelaconducta.net/

Dr. Escobar is Professor of Psychology at National
Autonomous University of Mexico. His research
interests include basic and applied research in the
experimental analysis of behavior, the history of
precision instruments in behavior analysis and
experimental psychology, and the development of
electronic equipment for experimental control and
behavioral recording. He has done impressive work in
creating physical computing systems for the study of
operant behavior, and he generously shares his results
—in both hardware and software — on his web site. An
article describing some of his work, published in the
Journal of the Experimental Analysis Behavior, is
included as an appendix to this Reference.

Other Online Resources

95

¥y F B8

Behavior Analysis

Behavior Analysis

home
Electronics
« Introduction to Microcontrollers
Response Collecting Device
Photocells
Arduino-Visual Basic Interface
+ Mobile Interface

Programs

3D Printing

e Resistors: https://learn.sparkfun.com/tutorials/resistors#tpower-rating

e LCDs: http://www.arduino.cc/en/Tutorial/LiquidCrystal

e DHT11 temperature and humidity module: https://learn.adafruit.com/dht/

e HC-SR04 ultrasonic sensor: https://www.cytron.com.my/p-sn-hc-sr04

e Infrared remote control: https://arduino-info.wikispaces.com/IR-RemoteControl

e SG90 servo: https://www.intorobotics.com/tutorial-how-to-control-the-tower-pro-sg90-servo-with-

arduino-uno/

e 28BYJ-48 stepper: https://arduino-info.wikispaces.com/SmallSteppers

e Thermistors: https://learn.adafruit.com/thermistor/overview

e Bi-polar junction transistors: https://learn.sparkfun.com/tutorials/transistors.

e All kinds of stuff: https://arduino-info.wikispaces.com

e About the role of apparatus in the history of behavioral psychology: the Behavioral Apparatus Virtual
Museum curated by Kennon A. Lattal at aubreydaniels.com/institute/museum

Books

There are a lot of books out there. Here’s a few that | think are helpful.

e Getting Started in Electronics by Forrest M. Mims

e FElectronics Cookbook: Practical Electronic Recipes with Arduino and Raspberry Pi by Simon Monk

e Programming Arduino: Getting Started with Sketches, Second Edition (2nd Edition) by Simon Monk

e Programming Arduino Next Steps: Going Further with Sketches by Simon Monk

http://analisisdelaconducta.net/
https://learn.sparkfun.com/tutorials/resistors%23power-rating
http://www.arduino.cc/en/Tutorial/LiquidCrystal
https://learn.adafruit.com/dht/
https://www.cytron.com.my/p-sn-hc-sr04
https://arduino-info.wikispaces.com/IR-RemoteControl
https://www.intorobotics.com/tutorial-how-to-control-the-tower-pro-sg90-servo-with-arduino-uno/
https://www.intorobotics.com/tutorial-how-to-control-the-tower-pro-sg90-servo-with-arduino-uno/
https://arduino-info.wikispaces.com/SmallSteppers
https://learn.adafruit.com/thermistor/overview
https://learn.sparkfun.com/tutorials/transistors
https://arduino-info.wikispaces.com/
http://aubreydaniels.com/institute/museum

96

Appendices

Overview

Elegoo Uno Project Super Starter Kit

Page 97. A list of the components in the kit we used in the Spring 2017 workshoip.

Escobar & Perez-Herrera (2015)

Page 98. An article describing a physical computing system for operant conditioning research developed
in Rogelio Escobar’s laboratory at the National Autonomous University of Mexico. The system uses an
Arduino to interface behavioral test chambers with a PC running a Visual Basic program.

Stepper 360 Dial

Page 107. A dial and pointer that you can cut out and attach to a stepper motor. See the “Stepper by
Degree” sketch that is reprinted in Part 6.

97

Elegoo Uno Project Super Starter Kit

Here are the components in the kit; the ones
used in the Spring 2017 workshop are in bold.

1 Uno R3 Controller Board

1 LCD1602 Module (with pin header)
1 Breadboard Expansion Board

1 Power Supply Module

1 Joystick Module

1 IR Receiver

1 Servo Motor (SG90)

1 Stepper Motor (28BYJ-48)

1 ULN2003 Stepper Motor Driver Board
1 Ultrasonic Sensor (HC-SR04)

1 Temperature & Humidity Module (DHT11)
1 9V Battery with DC

1 65 Jumper Wire

1 USB Cable

1 Active Buzzer

1 Passive Buzzer

2 Potentiometer

1 5V Relay (Songle SRD-05VDC-SLC-C)
1 Breadboard

1 Remote

1 Tilt Switch

5 Button (small)

1 1 digit 7-segment Display

1 4 digit 7-segment Display

5 Yellow LED

5 Blue LED

5 Green LED

5 Red LED

1 RGB LED

2 Photoresistor

1 Thermistor

2 Diode Rectifier (1N4007)

2 NPN Transistor (PN2222)

11C 74HC595

30 Resistor

10 Female-to-male Dupont Wire

Available from Amazon.

https://www.amazon.com/Elegoo-Project-Tutorial-Prototype-Expansion/dp/B01D8KOZF4/ref=sr_1_fkmr0_1?ie=UTF8&qid=1478216852&sr=8-1-fkmr0&keywords=eloggo+uno+project

98

Escobar & Perez-Herrera (2015)

JOURNAL OF TITE EXPERTMENTAL ANALYSIS OF BETTAVIOR

2015, 103, 427-435

LOW-COST USB INTERFACE FOR OPERANT RESEARCH USING ARDUINO AND VISUAL BASIC

RoceLio Escoar AND CARLOS A. Pirez-HERRERA

NATIONAL AUTONOMOUS UNIVERSITY OF MEXICO

This note describes the design of a low-cost interface using Arduino™ microcontroller boards and \nsudl
Basic programming for operant conditioning research. The board executes one program in Arduino™
programming language that polls the state of the inputs and generates outputs in an operant chamber.
This program communicates through a USB port with another program written in Visual Basic 2010
Express Edition™ running on a laptop, desktop, netbook computer, or even a tablet equipped with
Windows® operating system. The Visual Basic program controls schedules of reinforcement and records
real-time data. A single Arduino™ board can be used to control a total of 52 inputs/output lines, and
multiple Arduino® boards can be used to control multiple operant chambers. An external power supply
and a series of micro relays are required to control 28-V DC devices commonly used in operant chambers.
Instructions for downloading and using the programs to generate simple and concurrent schedules of
reinforcement are provided. Testing suggests that the interface is reliable, accurate, and could serve as an

NUMBER 2 {MARCIT)

inexpensive alternative to commercial equipment.

Key words: interface, Arduino, Visual Basic, instrumentation, experimental control

One problem laced by those interested in
conducting laboratory research in operant
conditioning is the high cost of commercial
equipment [or controlling and recording ex-
perimental events. This problem is particularly
acute in universities where resources are
limited, and outside the United States where
the costs arc higher because of import taxes and
shipping costs. Although inexpensive alterna-
tives to commercial equipment have been
offered, for example Palya and Walter’s
(1993) controller board, or a computer’s
parallcl port (c.g., Escobar & Lattal, 2010;
Gollub, 1991), these alternatives are now dated.

Advances in electronics have produced inex-
pensive technology that could be used in
operant rescarch. One example are micro-
controller boards, which arc compact input/
output boards that can be programmed to

This project was supported by the 2012 SABA Interna-
tonal Development Grant and by grant TA300213-2
awarded by PAPIIT, DGAPA UNAM to the first author.
We are indebted to Ernesto Huerta for his help in designing
the interface, and to Armando Machado, William Palya, and
one anonymous reviewer for their comments to previous
versions of this paper. We thank Nadia Santillin and Karya
Quinones for their help during the tests. Those interested
in using the interface described can contact the authors for
technical support (rescobar@unam.nx or mnbaxs@hot-
mail.com).

Address correspondence to: Rogelio Escobar, Labora-
torio de Condicionamiento Operante. 20 Piso Edificio C.
Facultad de Psicologia, Universidad Nacional Autdonoma de
México. Av. Universidad 3004. Col. Copilco-Universidad. C.-
P. 04510,

doi: 10.1002/jeab.135

activate devices such as lights or motors and to
detect changes in the environment with a
varicty of scnsors. Hoffman, Song, and Tuttle
(2007) described how a microcontroller board
can be used to control operant chambers. Their
board, however, required extensive assembly
and the schedules ol reinlorcement had to be
programmed in Clike language.

In recent years, several easy-to-use preas-
sembled microcontroller boards hage become
Wldelv ~available (e.g., Arduino™, BASIC
stamp®, Parallax Propeller l‘) The lntufa(,L
dcscrlbcd in this note uscs Arduino™ Uno and
Arduino™ Mega 2560 microcontroller boards.
The open-source Arduino™ boards are inex-
pensive, and have been tested for precision,
accuracy, and reliability (see D’Ausilio, 2012;
Schubert, D’Ausilio, & Canto, 2013), propertics
that make them suitable [or _operant research.
Thc most popular Arduino " board, the Ardu-
ino™ Uno R3, is equipped with 14 digital input/
output pins that can be used to control and
record events in an operant chamber, Ardu-
ino™ Mega 2560 R3 boards, in comparison, are
morce cxpcnswc but arc cquipped with 54 digital
input/output pms The two boards can be used
interchangeably in the system described in this

paper.

! Only 12 digital input/output pins are available in
Arduino®™ Uno hoards and 52 in the Arduino™ Mega 256
boards because serial communication with the PG uses
Digital Pins 0 and 1.

427

428 ROGELIO ESCOBAR and CARLOS A PEREZ-HERRERA.

Arduino® is an open-source prototyping
platform that consists of Arduino® boards
and Arduino® integrated development envi-
ronment (IDE), which is required for writing,
debugging, and transferring programs to the
microcontroller in the board. Arduino® boards
communicate through a USB port with a
personal computer (host PC) running the
Arduino® IDE. This port is also used for
powering up the hoard and for sending and
receiving real-time data.

The microcontroller in the Arduino® boards
executes the instructions of the program
written in C-like Arduino® language. This
program is required to read the state of inputs
and to generate outputs. Once the program is
transferred from the host PC to the board it is
executed immediately and continuously until
the board is turned off. Te minimize the need of
programming using this specific language, the
authors created two free-distribution general-
purpose programs designed for operant con-
ditioning experiments (see section on Arduind®
Program). These programs were designed to
communicate with schedules of reinforcements
written in the more familiar Visual Basic
programming language; specifically Visual Ba-
sic 2010 Express Fdition® (VB2010).

The structure of the interface is shown in
Figure 1. The Arduino® board is programmed
to translate contact closures in the operant
chamber into values sent to a serial communi-
cation port through the USB port. These values
are read and recorded by the VB2010 program
that can also produce an output after the value
is read. The VB2010 program sends a symbolic
code to the serial communication port (also
through the USB port) where the Arduino®
program reads and interprets the symbolic code
to activate lights and feeders in the operant
chamber.

Programs for controlling operant chambers
could be written exclusively in Arduino®
language by users familiar with this program-
ming language, thus eliminating the need for a
VB2010 program (see e.g., Hoffman etal., 2007;
for a similar strategy). The small amount of
memory in microcontrollers and the basic user
interface, however, limit the size and function-
ality of programs. VB2010, in contrast, enables
researchers to program relatively complex
experiments using the easy-to-learn and graphi-
cally oriented VB2010 IDE. Additionally, pre-
vious versions of Visual Basic® have been used

in operant research (e.g., Cabello, Barnes-
Holmes, O'Hora, & Stewart, 2002; Dixon &
MacLin, 2003). Programs created previously
can be modified with relative ease to commu-
nicate with an Arduino® board. VB2010 is free-
distribution software and supports x86 and x64
Windows® architectures®.

Hardware Assembly
Inputs

Digital pins detect the state of digital switches
such as those used in levers or keys, which can
be either on (closed contacts) or off (open
contacts). Figure 2 shows a diagram of the
connections between a micro switch and Digital
Pin 8 on an Arduino® Uno board. A second
input device can be connected to another
digital pin (e.g., 9). The distribution of pins is
similar in Arduino® Mega cards.

Outputs

The Arduine® board pins can power up
directly 5V DC devices drawing < 40mA of
current. A regulated power supply must be
added, however, to power up 28-V DC devices
used in standard operant chambers such as
bulbs and feeders. The upper section of Figure 3
shows an Arduino® Uno board connected to
28-V DC output devices using an inexpensive
array of 5V DC electromechanical relays and
the integrated circuit ULN2803A. The lower
section of Figure 3 shows another setup with
solid-state relays, which are noiseless and faster
than electromechanical relays. With both set-
ups, for example, when the VB2010 program
sends a symbolic code representing reinforcer
delivery to the serial communication port, the
Arduino® program detects the code and
changes briefly the state of Digital Pin 12
from low to high (off to on). This activates
the feeder in the operant chamber by changing
the state of the relay. The electronic compo-
nents can be arranged on a solderless bread-
board for testing using male to male jumper

? Arduino® IDE runs on Windows®, Mac OS® X, and
Linux® bur the design of the present interface is limited to
PCs ranning Windows™ because of VB2010 requirements:
Windows XP with service pack 3, Vista, 7, or 8 operating
systems, 1.6 GHz or faster processor, 1024 MB RAM, and 3
GB of available disk space. VB2(10 can be installed on a
computer running Mac OS using a Virtual Machine but this
configuration was not tested.

99

100

ARDUINO—VISUAL BASIC INTERFACE 429

Compuier

Arduino board

Experimental
chamber

VB2010 | b

Micracontroller

Fig. 1. Scheme of the interface structure. An Arduino™ program detects the state of inputs in the operant chamber and
sends a signal to the serial communication port where the VB2010 program in the host PC reads it. The VB2010 program
also sends signals to the serial communication port where the Arduine™ board reads it and activates the outputs in the

operant chamber by changing the state of relays.

wires and later, if needed, transferred to a
solderable breadboard or perfboard. Addition-
ally, a screw shield (e.g., Itead™ proto screw
shield) can be added on top of Arduino™
boards to secure the connections.

Software

Table 1 contains step-by-step instructions for
setting up the intertace. Steps 1 and 2 describe
the installation of Arduino™ IDE and VB2010
IDE in the host PC,

Arduino® Program

The source code of the Arduino® program
can be downloaded Irom the authors’ website
(see Table 1, Step 3). Two versions are available.
The code in the “Arduino_Program.ino” file is
used when only one response is recorded, and
the code in the “Arduino_Program_Concur-
rent.ino” file can be used when two responses
are recorded (e.g., in concurrent schedules of
reinforcement). Both programs establish serial
communication with the PC, define the sym-
bolic codes for activating outputs in the operant

Digital

To
USB

Lever

' . . R . . T
Fig. 2. Schematics of the connections between Arduino™ Uno (schematic created using Fritzing™ sofltware [www.
fritzing.com]) and a switch uscd in standard rat levers and pigcon keys. In some pigeon keys, the lever shown in the diagram

is replaced with a small button.

.
430 ROGELIO ESCOBAR and CARLOS A PEREZ-HERRERA.
ULN2803A THD-0501L Experimental
. L . NC Chamber
Digital Pins in1 Out1
12 and 11 2dma2 outz 22
3 16 Feeder
—{m3 Out3 === NO
~dme outa 5
s outs |24 + op +
To [3 13 -l 28V DC
uss i e Y |c —— Power GND
Zmy outz 22 —— Supply
2lns outs 2L GND|
o com |2 NC
NO
Houselight
— |
2200
AQZ102
Digital Pins Experimental
12and 11 Chamber
3 o
; [:T_."T;' I Feeder
To I
use + op +
—l— 28V DC
Power GND
GND[___Sueely
17 &y
Houselight

Fig. 3. Schematics of the connections between an Arduino® board and the outputs in an operant chamber (Arduino®
schematic created using Fritzing™ software). In the examples, only a houselight and a feeder are shown. Feeders are
commenly connected with three wires, 128 VDC (red), operate (OP, white), and GND (black), as shown in the diagram. In
feeders with two wires, the GND wire in the diagram is not used, and the GND wire in the feeder is connected as the OP wire.
The upper diagram shows the connections using electremechanical 5V DV relays (Sun Hold, Model THD-0501L). The
lower diagram shows the connections with solid-state relays (Panasonic, Model AQZ102).

chambers, and poll continuously the state of
digital mmputs. Only one program can be
uploaded to the microcontroller at a time and
it is stored in the nonvolatle flash memory of
the microcontroller. Therefore, unless a
change in the number of inputs or outputs is
required during an experiment, the Ar(\luino(@
program is transferred to the Arduino® board
only once (see Table 1, Steps 4 and 5).

Arduino® programs are divided into three
sections. In the first section, variables are
declared and given specific values that match
the digital pins in which the devices in the
operant chamber are connected (see Fig. 1).
For example, in the “Arduino_Program.ino”
file, the instruction “byte Houselight=11"
creates the variable “Houselight” with a value
of 11. This value matches the digital pin where
the houselight is connected.

The sections following the declaration of
variables are “Setup()” and “Loop()”. In the

“Setup()” section, serial communication at
9600 baud rate is initialized with the instruction
“Serial.begin (9600)”, and each variable is set as
input or output. For example, the instruction
“pinMode (Houselight, OUTPUT)” sets Digital
Pin 11 (the value assigned to the variable
Houselight) to output mode. The instruction
“pinMode (Response INPUT_PULLUP)”, after
Digital Pin 8 was set to input mode, enables an
internal pull-up resistor that avoids random
fluctuations of the input values when the switch
contacts are opened. Because of this instruc-
tion, when no response is detected the value of
the input is 1 and when a response is detected
the value of the inputis 0.

The instructions in the “Loop()” section of
the code, known as the main loop, are executed
and repeated after the board is powered on.
Within the main loop, the program reads
symbolic codes (*S”, “R”, or “E”) sent to the
serial communication port from the host PC,

101

ARDUINO—VISUAL BASIC INTERFACE

431

Table 1

Checklist for running schedules of reinforcement using the Arduino®VB2010 interface.

Step Instructions

Arduine® and VB2010 IDEs

1 Download Arduino® IDE from http:/ /arduino.ce/en,/Main/Software and install it in the host PC.
Versions 1.0.2 to 1.00.6 were tested.

2 Download VB2010 IDE from http://www.visualstudio.com/downloads/download-visual-studio-vs#d-

2010-express, and install it in the host PC. VB2(310 includes SQL Server and Silverlight but these
components are not required. Run once and close to allow VB2010 to create the “Projects” folder.

Arduino® program

3 Download “Arduino_Program.zip” file from the authors” website: http: //analisisdelaconducta.net/
wp-content/uploads/2014 /11 /Arduino_Program zip. Extract the file in any location in the host PC.
This will create the Arduino_Program folder containing the “Arduino_Program.ino” file.

4 Connect the Arduino® board to the USB port and verify the assigned COM port using the “Device
Manager” in the “Control Panel”. The COM port differs for each hoard connected but remains

constant for the same board.

5 Open “Arduino_Program.ino” file using Arduino® IDE and click the “upload” button to transfer the
program to the Arduino® hoard. Before uploading, check hoard model by clicking “Tools” and
then “Board”. Verify that the COM port selected in “Serial Port” also in “T'ools”, matches the port

displayed in the “Device Manager™.

6 Serial maonitor, Ctrl + Shift + m, inside Arduino® IDE can be used for testing inputs and outputs. If
the devices in the chamber are connected correctly, a list of values = 1 change to 0 when a response
is detected. Entering “S” or “R” and pressing the “Send” button activates the outputs.

VB201(} program
7 Create folder “Data” in Ch,

8 Download “Visual Basic_program.zip” from the authors” website: http://analisisdelaconducta.net/
wp-content/uploads/2014,/11 /Visual_Basic_Program.zip

g Extract the file to C\ ...Documents\Visual Studio 2010hProjects. This will create folder
Visual_Basic_Program. Inside the folder, double click on “Arduino_VB.sln” to open the VB2010 program.

10 Execute the program by pressing “F5” or by clicking the “start debugging” icon. Introduce the values,

select the schedule and click “continue”. Confirm the data entered by clicking “continue”.

Notz. To generate concurrent schedules of reinforcement with two responses download “Arduino_Program_Concurrent.
zip” file (http://analisisdelaconducta.net/wp-content/uploads/2014/11 /Arduino_Program_Concurrent.zip) in Step 3,
and download “Visual_Basic_Program_Concurrent” folder (http://analisisdelaconducta.net/wp-content/uploads,/2014/

11/Visual Basic_Program_Concurrent.zip} in Step 8.

and changes the state of the corresponding
device in the operant chamber. In the following
example, if character “R” is read, the feeder is
activated for 40ms (comments in Arduino®
code are italicized and follow / /).

char Event = Serial.read();

/7 The variable "Event” takes the value read from
the serial communication port.

switch (Event) {

/7 This instruction is used to specify code that
should be executed when the value of a case statement
matches the value of the variable “Event”,

case ‘R’:

/7 If the value of “Event” is equal to “R” (the
symbolic code for veinforcer delivery) execute the code in
the following lines befove the break instruction.

digitalWrite (feeder, HIGH); // Activates the
Sfeeder

delay(40); / / This delay keeps the feeder on for 40

(AR

digitalWrite{feeder, LOW); // Turns off the
Seeder.

break; // required to terminate the code when the
valiee of “Euvent” is “R”.

In the last section of the main loop, the state
of the digital input is polled and its value (1 or
0) is sent to the serial communication port
using “Serial.println(digitalRead (Response))”.
After the state of input is read, a 4ms delay is
added to debounce the input. If duplicate
responses are recorded, this delay could be

lengthened.

VB2010 Program

Two programs created in VB2010 can be
downloaded from the authors’ website to
generate simple and concurrent schedules of
reinforcement (see Table 1, Step 8). One
program, “Arduinc VB.sln” within the

432 ROGELIO ESCOBAR and CARLOS A PEREZ-HERRERA.

“Visual Basic_Program” folder, is used for basic
schedules of reinforcement from a single key or
lever: fixed ratio (FR), fixed interval, variable
ratio, and variable interval (VI) schedules®, with
or without added delays to reinforcement. The
other program, within the “Visual Basic Prog-
ram_Concurrent” folder, is used for two-input
concurrent schedules of reinforcement using
combinations of the four basic schedules. Each
folder is stored in a compressed zip file. The
programs use a graphic interface that allows
users to set the values of commeon variables in
operant research.

At the end of each session, the VB2010
program creates and saves an output file with
the date, time of session, subject name, session
number, schedule, an array of experimental
events, and summary data including the total
number of responses, total number of rein-
forcers, and seconds elapsed. The array of
events consists of a list of values corresponding
to the time stamp of each event in ms and the
code of the event separated by a period (a
header in every output file describes the code
for each event). The output file can be
imported from Excel® using the peried to
separate the values into columns.

After downloading one of the two com-
pressed files containing one VB2010 program
from the authors’ website, the file must be
extracted to the “Projects” folder in the “Visual
Studio 2010” folder that can be found within
“Documents”. A double-click on the “Ardu-
no VB.sin” file within the folder opens the
VB2010 program (see Table 1, Step 9). It is
important to note that the “Visual_Basic_Pro-
gram” folder contains the program that runs in
conjunction with the program stored as “Ardu-
ino_Program.ino”, and the “Visual_Basic_Prog-
ram_Concurrent” folder contains the program
that runs in conjunction with the program
stored as “Arduino_Program_Concurrent.ino”
file.

To communicate with the Arduino® pro-
gram, the serial port class functions must bhe
enabled with the instruction “Imports System.
10.Ports”. Afterwards, the same communica-
tion port used by the Arduino® board (as
specified in the “Device Manager”) has to be
declared and initialized as a serial port. In the

* Variable-interval durations and the progression of
responses for variable-ratio schedules are generated using
Fleshler and Hoffman’s {(1362) equation.

following example, COM4 was used. Comments
in Visual Basic code are italicized and follow .

Public Comunication_Port As String = “COM4”

* Declayes the variable “Communication_Povt” as a
string with the name “COM4”".,

Public Arduino As SerialPort

* Declares the variable “Arduino”™ as a serial port
object.

Arduino = New SerialPort(Comunication_-
Port, 9600)

* Establishes communication with “COM4” at a
9600 bawd rate.

Changes in input values are detected with a
function that reads the serial communication
port.

If Arduino.BytesToRead > 0 Then

> Ardatino was previously defined as SevialPort. The
Jfollowing code will be executed only if there is a value
in the serial communication port.

Arduine_string = Arduino.ReadLine ()

? “Arduino_String” takes the valiue vead from the
serial communication port.

Actual_Response = Convert. Tolnt32
{(Arduino_string)

* “Actual Response” takes the value in “Arduino_-
String” converted to an integer.

End If

Each reinforcement schedule is generated
with few lines of code in the function
“Schedule_of Reinforcement()” within the
“Session” form. For example a fixed-interval
schedule is generated with:

If Time () >= (Schedule_Value * 1000) And
Actual Response <> 1 Then

» “Schedule Value” is defined by the user as the
duration of the schedule in seconds. Thus, if the time
elapsed (measured in the Time() function, not shown)
is longer than the schedule value in milliseconds and
if @ response is detected, execute the following code.

Reinforce() * This instruction executss a function
(see below).

End If

Activating an output device is accomplished
by sending a character to the serial communi-
cation port. For example, in the function
“Reinforce()” the character assigned to the
reinforcer event is sent to the serial communi-
cation port where the Arduino® program reads
it and interprets it.

Function Reinforce() As Integer ' Declares a
Junction

Arduino. WriteLine(*R*)

> When the function is executed, the character “R” is
sent to the serial communication port.

103

104

ARDUINO—VISUAL BASIC INTERFACE 433

TXT . WriteLine (Time_in_milliseconds{) &
“.500%)

© Writes the time stamp of the event followed by a
period and the event marker in the output file.

Total Reinforcers = Total Reinforcers+1

" Reinforcer counter incremented by one.

End Function

Multiple sessions in different chambers, each
connected to an Arduino® board, can be
controlled simultanecusly from the same
VB2010 program. It is necessary to enter the
correspending COM port, session name, sub-
ject name for each session, and click the
“continue” button to open the new session.
The code necessary to open more than one
session simultanecusly can be found in the
“Confirm” form. In this form, the instruction
“Imports System. Threading” initializes threads
in VB2010. Each session is considered a new
thread. The instruction “Arduino.Close()” is
needed before loading a new session using the
same COM port. Custom schedules of rein-
forcement could be written by replacing the
code within the “Schedule_of Reinforcement
()7 function or by creating a new project and
transferring all Arduino®-related functions and
variables.

Test Results

The precision and accuracy of standalone
Arduino® hoards in behavioral research have

been tested previously {e.g., D’Ausilio, 2012).
However, using these boards in combination
with VB2010 warrants further testing. One type
of test analyzed the speed of the interface at
presenting a stimulus after detecting a re-
sponse. A second, standalone Arduino™ board
was used to simulate a response and it also
served as a microsecond stopwatch (Arduino®
boards provide a 4-ps resolution timer). During
the test, the following cycle of events took place
for 1000 trials: 1) the standalone board started
its stopwatch and generated a 20-ms pulse; 2)
the pulse transition from off to on was detected
and recorded by the main Arduino®VB2010
interface; 3) the VB2010 program recorded the
presentation of a “reinforcer® and generated a
symbolic code that was read and executed by its
associated Arduino® board; 4) the code acti-
vated a sclid-state relaywhich in turn stopped the
stopwatch of the second Arduino® board; a 1-s
interresponse time followed before the next
cycle began. The tests were conducted under
conditions that simulated a variety of tasks
conducted. simultaneously in the host PC with
an Intel Core 17 processor and 8 GB of RAM.
Table 2 shows the results. When CPU
consuming tasks (e.g., antivirus scan) were
prevented and the VB2010 and Arduine®
programs controlled a simple schedule of
reinforcement in the foreground, the latency
from the onset of the 20-ms pulse to the
stopping of the stopwatch averaged 12.56ms.

Table 2

Lateney fesis
One response recorded (fixed ratio 1}
CPU load (%)} Boards Executed in background Mean (ms} SD (ms) Range (ms} Larencies = 10(bms
717 1 No 12.56 2.21 9.59 -17.73 4
15 - 21 2 No 13.11 2.80 9.70 - 17.68 4
19 - 23 3 No 12.83 2.25 971 -17.68 U]
60 — 70 3 Yes 12.64 2.29 9.60 - 20.89 4
100p#* 3 No 1517 4.48 9.92 - 41.33 U]
100 3 Yes 76.70 253.15 9.74 —2103.05 9%
Two responses recorded {concurrent VI VI}
7-17 3 No 21.03 618 11.77 -32.04 4
60 — T 3 Yes 23.34 572 12,59 — 23.34 U]
100 3 No 48.89 47.68 11.88 — 251.67 11%

Note. Tests were conducted by recording one response in a simple schedule of reinforcement (FR 1}, and twa responses in
concurrent schedules of reinforcement (VI 15 VI 1) using computers running Windows 7®. The tests were conducted

under three conditions that involved different CPU loads,
simultaneously. The VB2(H0 program ran in the foreground

with one, two, and three Arduine® boards connected
and background.*These loads were generated by running

simultane ously common programs that yielded high CPUusage {(e.g., Norton® virus scan, Internet Explorer®, Word®, and
Excel®}. ** This CPU load was reached using JAM software Heavy Load® 3.5,

434 ROGELIO ESCOBAR and CARLOS A PEREZ-HERRERA.

When the VB2010 and Arduino® progrars
controlled a concurrent schedule, the mean
latency increased to 21.03ms. The speed in
both tests, however, was not systematically
affected when more than one Arduino® board
was used (simulating the control of up to three
operant conditioning chambers polling one or
two responses). Running antivirus scan tasks
and other common programs in the fore-
ground produced slightly longer latencies but
had no clear effect on general performance.
Additional test results (not shown in the tables)
showed that performance was not noticeably
affected when three responses in concurrent
schedules were polled simultaneously, when
generic hubs were used to connect the Ardu-
ino® boards, when high memory and high disk
usage were simulated, or when the VB2010 ran
in another PC (Intel Core i3 with 4 GB RAM).
Latencies longer than 100ms were observed
only when CPU load was forced to reach 100%
{see Table 2). The longest latencies (> 1) were
observed when the VB2010 program executed
in the background with a CPU load of 100%.
Under such conditions, the interface would be
inadequate for operant research. It is impertant
to note that each Arduino® board increases
CPU load by approximately 3%. Therefore,
increasing the number of Arduine® boards,
within practical limits, should have no substan-
tial effect on performance.

Another type of test examined the maximum
number of responses recorded per second. In
this test, a stand-alone Arduine® Uno board
turned on and off a solidstate relay (a simulated
response) 1000 times in each of 10 consecutive
trials. Transitions of the state of the relayfrom off
to on, and from on to off were detected and
recorded in an output file with the Arduina®-
VB2010 interface connected to a host PC. The
duration of the simulated response (from on to
off) and the interresponse time (IRT) (from off
to on) were setat 1 ms and lengthened until 1000
responses were recorded in each trial. Results
showed that the minimum response duration
detected accurately was 4 ms with an IRT of 4 ms.
Therefore, up to 125 responses were recorded
per second. However, because the VB2010 timer
hasa 13-msresolution, the output file showed up
to three responses with the same time stamp.
This characteristic also restricts the accurate
measurement of response duration in the out-
put file to those lasting over 153 ms.

When the VB2010 and Arduino® programs
recorded two or more responses in concurrent
schedules, the minimum response duration
detected was 12 ms with an IRT also of 12 ms.
These durations are shorter than the 15-ms
responses that were generally recorded using
solid-state and electromechanical equipment in
operant research during the 1960s and 19705

with pigeons as subjects. Furthermore, pulse

Table 3

Components and prices

Quantity Companent Description Total Price {(USD)
1 Arduino® Uno 25.00
1 Arduino® Mega 46.00
1 Itead Proto screw Shield (for Arduino® Uno) 6.50
1 Itead Mega proto screw shield (for Arduino® Mega) 8.00
1 USB Cable (A to B) 4.00
1 Power Supply 0-30V DC, 5 A* (Mastech HY3005D) 120,00
2 Solid-state relays (Panasonic Model AQZ102) 29.00
2 220 Ohm carbon film 1/2W resistor 2.00
2 Electromechanical relays (5V DC coil, contact rating > 1 A at 30V DC) 10.00
(Sun Hold, Model THD-0501L)
1 Integrated circuit ULN2803A 2.00
10 Jumper wires (male to male}) 4.00
1 Solderless breadboard 6.00
1 Solderable breadboard 10.00

Note. All the components mentioned in this note are included. See text for details on the specific components required
for each configuration. *Any 28-V DC regulated power supply can be used. Each standard operant chamhber draws

approximately a maximum of 1.5 A of current.

105

106

ARDUINO—VISUAL BASIC INTERFACE 435

formers were required to activate reliably the
electromechanical equipment. The pulse for-
mer transformed each 15-ms response into a 30-
or 40-ms pulse. During this pulse no responses
were recorded. Therefore, it can be suggested
that the Arduino®-VB2010 interface exceeds

the requirements of typical operant research.

Conclusions

Combined with VB2010, Arduino® boards
are a reliable low-cost alternative to commercial
equipment for eperantconditioning research.
Animportant advantage over other inexpensive
systems 1s that the interface can be used with
most desktop or portable computers running
Windows® with an available USB port. Another
advantage is that a variety of sensors (e.g,
buttons, switches, photoresistors, force sensors)
and output devices (e.g., LEDs, servo motors,
step motors), which could be adapted for
human and nonhuman animal research, can
be connected with relative ease to the Ardu-
ino® boards. Additionally, the system could also
be used for recording human behavior in
natural settings.

Table 3 lists the interface components and
their current prices. Even with an Arduino®
Mega hoard and solid-state relays, the cost of the
compenents, without the power supply, is
approximately 100 USD. Although the cost is
considerably lower than that of commercial
equipment, the comparison may not be fair
because commercial equipment consists of
integrated systems of operant chambers, con-
trol equipment, and state-notation program-
ming. The Arduino®-VB2010 interface
requires connecting an array of relays to
commercial or custom-made operant cham-
bers, and VB2010 programming. In any case,
the low price of the components is also
important for maintenance. When an Arduino

board malfunctions, it can be replaced and
reconnected within minutes. It is also worth
mentioning that after testing numerous Ardu-
ino® boards in avariety of environments during
extended use, we found that not a single board
has stopped working. The inexpensive, readily
avallable microcontroller boards in combina-
tion with free software could help establishing
or expanding operant-conditicning laborato-
ries around the world.

Endnotes

References

Cabello,F., Barnes-Holmes, ., O'Hora, D)., & Stewart, 1.
(2002}, Using visual basic in the experimental analysis
of human behavior: A brief introduction. Experimental
Analysis of Husman Behavior Bulletin, 20, 18-21.

D’Ausilio, A. (2012). Arduino: A low-cost multipurpose
lab equipment. Behavior Research Methods, 44,
305-313.

Dixon, M. R. & MacLin, O. H. (2003). Visual Basic for
behavioral psychologists. Reno, NV: Conrtext.

Escobar, R., & Lattal, K. A. (2010}. Low-cost interface using
a parallel port and Visual Basic. Mexican Journal of
Behavior Analysis, 36, 7-21.

Fleshler, M., & Hoffman, H. 8. (1962}. A progression for
generating variable-interval schedules. fournal of the
Experimental Analysis of Behavior., 5, 529-530.

Gollub, L. R. {1991}. The use of computers in the control
and recording of bhehavior. In [. H. Iversen &
K A Lattal {(Eds.), Technigues in the behavioral and
neriral scignees: Experimental analysis of behavior (Part 2,
pp.155-192}. Amsterdam: Elsevier..

Hoffman, A. M., Song, J., & Tuttle, E. M. (2007}. ELOPTA:
A novel microcontroller-based operant device. Behauior
Research Methods, 39, 776782,

Palya, W. L., & Walter, D. E. (1993). A powerful, inexpensive
experiment controller or IBM PC interface and
experiment control language. Behavior, Research Meth-
ods, Tnstruments & Computers, 25, 127-136.

Schubert, T., I’Ausilio, A., & Canto, R. {(2013). Using
Arduino microcontroller boards to measure response
latencies. Behavior Research Methods, 45, 1332-1346.

Recetved: fune 16, 2014
Final Acceptance: December 5, 2014

Stepper 360 Dial

To measure the movement of the 28BYJ-48 stepper motor in degrees, cut out the meter face, affix it to the

motor, and then fit the pointer onto the shaft of the motor.

W
\w\ M {'/’”/w/n
350 0
\Q}\\\ ’5 //// //
O 4
M ///
=
;é?k“é? o
S5 ©
=9
SW
=N
= o
= 3
= o
Za
Z A &
Z, o &N
45/ e SN \\§
%, ™
& i o A
AN
7 My, /e 06T ogr OLL °\ M
i || | \ |l\"‘"\ \\
I I (1111

Note the rectangles in the dial
and pointer. Be sure to cut these
out to allow the shaft of the
motor poke through the dial and
to allow the pointer to be fixed
to the shaft.

iy
\\\\\\\“‘ [’”y'w/ ™
300 310 320 3

Stepper motor with dial and pointer
attached (the dial blocks your view of the
most of the motor). You can see the shaft
coming through the pointer.

107

108

109

Quick Reference

Input/Output {I/O) pins on the Arduino Uno. Some are capable of
Pulse Width Modulation {(PWM) (but need not be used that way).
Some are capable of analog input (but need not be used that way).

Use for Usefor Use for
Pin Label Digital PWM Analog Notes
1/0? Output? Input?

0 0 Yes 1

1 1 Yes

2 2 Yes

3 ~3 Yes Yes 2
4 4 Yes

5 ~5 Yes Yes 2

6 ~b Yes Yes 2

7 7 Yes

8 8 Yes

9 ~9 Yes Yes 2
10 ~10 Yes Yes 2
11 ~11 Yes Yes 2
12 12 Yes

13 13 Yes 3
14 AD Yes Yes

15 Al Yes Yes

16 A2 Yes Yes 4
17 A3 Yes Yes

18 Ad Yes Yes

19 AS Yes Yes

1. In sketches that involve serial communication, Pins 0 and 1 are
occupied. If possible, don't use these two pins in your sketches.
You have 18 other pins you can use for digital |/0.

2. Pins 3,5, 6,9, 10, and 11 are capable of Pulse Width Modulation
{(PWM) when configured as outputs. You don't have to use them
for PWM; if you don't need PWM, you can use these pins as you
would any other digital pin.

3. Do not use Pin 13 in INPUT_PULLUP mode. It is connected to an
LED and a large diode which interefere with this mode.

4. Although these six pins are labeled with an "A" for "analog," they
can be configured as digital inputs, digital outputs, or analog inputs.
In sketches, you can refer to them with their labels (AO, Al, etc.,
which are treated as integer constants by the compiler) or you can
refer to them by pin number (e.g., 14, 15).

110

Basic Structure of an Arduino Sketch

Add library references
<€ and declare global

void setup() { variablesup here.
// put your setup code here, to run once:

}

void loop() {
// put your main code here, to run repeatedly:

If you add your own
(functions, put them
down here.

Variables, Constants, Arrays

int: can store an integer (a whole number) between -32,768 and 32,767.
Iong: An integer that can vary from -2,147,483,648 to 2,147,483,647.
float: Floating-point numbers, that is, numbers with a decimal point.
String: Text, that is, a string of characters (note the upper-case ‘S”).
boolean: can hold either of two values: true or false.

Declare a variable by stating the data type followed by the name, e.g.: int respCount;
To declare a constant, add const to the beginning and assign a value, e.g.: const int 1Tl = 5000;

An array is a collection of variables with a single name, differentiated by an index number. The most common way to
declare an array is illustrated by this statement which would create an array of 100 integers, with index values from 0 to 99:
int responselLatency[100];

Arithmetic Operators

= Assignment operator, e.g. x = 3 assigns x the value of 3. Not to be confused with == which is a comparison operator.
+ Addition

— Subraction

* Multiplication
/ Division

% Modulo. Returns the remainder when one integer is divided by another. If x=17 and y = 5 then x % y returns 2.

Math Functions
abs (X) Returns the absolute value of x.

constrain (X , A, b) Constrains x to the range from a to b inclusive. For example, if x = 106 then
contrain(x, 0, 100) would return 100.

map (val , fromMin ” fromMax , toM in . toMax) Takes “val” which can have a low of

J

“fromMin” and a high of “fromMax”, and interpolates into a new range with a low of “toMin” and and a high of “toMax”.
All values are integers. This functiont may come in handy when dealing with analog input.

111
max(x » y) Returns the higher of two numbers. If x =5 and y = 1 then max(x, y) returns 5.
min (X y y) Returns the lower of two numbers. If x =5 and y = 1 then min(x, y) returns 1.

pOW(b ” e) Raises b to the e power. If b =10 and e = 3 then pow(b,) will return 1000. Note that e can be a fraction:
If b =10and e =.5 then pow(b, e) = 3.16.

Sq I"t(X) Returns the square root of x.
i nt(x), I ong (X), float (X) converts x to an int, a long, or a float, respectively.
string. toFloat() Converts string to a float.

string.tolnt() Convertsstring to an int.

Comparison Operators

—= Equal to. Not to be confused with = which is the arithmetic assignment operator.
1= Not equal to

< Lessthan

> Greater than

<= Less than or equal to

>= Greater than or equal to

Boolean Operators

X Y X&&Y Xy X
false false false false true
false true false true true
true false false true false
true true true true false

&& Logical “and”
I I Logical “or” (these characters are typed by pressing your keyboard’s back-slash key with the Shift key held down)

1 Logical “not” (negation)

Functions
Anatomy of a C function
A function is a block of code that performs some well-defined Datatype of data returned,
duty (it carries out a function) and can be called to action by SRy C amatype. parameters passed to
other code within the sketch. "void" if nothing Is returned. function, any C datatype.

/ Function name \
¢

int myMultiplyFunction(int x, int y){

int result; Return statement,

datatype matches
result = x * y;/ declaration.
return result;

} -

Curly braces required.

112

Serial Communication

Serial. beg i n(baud) > Sets up the communications link between the Arduino and the PC. The “baud”
parameter is replaced with a number representing the desired baud rate (e.g., 9600). It should appear in the setup section
of your sketch.

Serial .setTi meout(m il SGCOﬂdS) 5 Sets the amount of time, in milliseconds, that the sketch

will spend reading the serial port before moving on. This function should appear in the setup section of your sketch. The
default is 1000, a long time to wait. If you anticipate short strings, the time limit can be a few milliseconds. Try different
limits to see what suits your purpose.

Serial .availabl e() Returns the number of characters available to be read from the serial port. If the
result is 0, then there is nothing in the buffer, that is, nothing to read.

Serial .readStri ng () Tries to read a string of characters from the serial port. If will persevere until it
reaches the time limit imposed by the “Serial.setTimeout()” function.

Serial .print(string); and Serial.printin(string) ; soth functionssenda

string of characters from the Arduino through the serial port to the PC. They differ in one respect: “print” simply sends the
string whereas “printIn” sends the string and follows with a newline character that causes the next string to be printed on
the next line.

Timing
del ay(m il SECOHdS) 5 Pauses (suspends) the sketch for the specified milliseconds.

delayMicroseconds(microseconds) ; Pauses the sketch for the specified microseconds.

milli S() Returns the time in milliseconds since the Arduino began running the current sketch. This number will
overflow (go back to zero) after approximately 50 days. Use a long variable, rather than an int, to store the result

mICros () Returns the time in microseconds since the Arduino began running the current sketch. This number it

returns will overflow (go back to zero), after approximately 70 minutes. Because micros() can return such a large number,
use a long variable, rather than an int, to store the result.

Digital Input

P i nl\/Iode(p in , | NPUT_PULLUP) > Configures the designated pin as an input and activates the
internal pullup circuit so that the pin is held high in its resting state. It should appear in the setup section of your sketch.

digrtalRead(pIn)Returns the current state of the pin, LOW or HIGH.

Digital Output
0] i nl\/lode(p in , OUTPUT) > Configures the designated pin as an output.

digitalWrite(pin, HIGH); and digitalWrite(pin, LOW); changesthe

state of the output pin; setting it HIGH allows 5V to flow and setting it LOW grounds it.

113

Analog Input

anal 0og Read (p i n) Reads the voltage on the designated pin and returns a number between 0 (if the pin is

connected to GND) and 1,023 (if the pin is at 5V). The pin has to be one of the six on the Arduino Uno that are connected to
analog-to-digital conversion channels. These pins are labeled A0 through A5 on the Arduino; your sketch can refer to them
by these their labels (which are treated as integer constants by the Arduino compiler) or by their actual pin number (14
through 19).

Analog Output

analogWrite(pin,dutyCycle) ; The Arduino Uno does not support true analog output, but it can
mimic it with this function. Here “pin” must be one of the pins capable of Pulse Width Modulation: 3, 5, 6, 9, 10,
11. “dutyCycle,” is a value between 0 and 255 that expresses the part of the pin’s normal cycle during which
the pin will be HIGH. For example, a dutyCycle value of 63 is 25% of the way between 0 and 255. This value will
cause the pin to be HIGH for 25% for the cycle (the “duty” part) and LOW for the other 75%.

Branching

1T (expression){
... code that will be executed if the expression is true...

}

1T (expression) {
... code that will be executed if the expression is true...

}

else {
... code that will be executed if the expression is false...

}

switch (variable) {
case 1:

... code that will be executed if variable == 1...

break;
case 2:

... code that will be executed if variable == 2...

break;
case 3:

... code that will be executed if variable == 3...

break;

... etc., etc., as many cases as you need...

default:
... code that will be executed if no match is found...

break;

114

Looping

parenthesis

declare variable (optional)

initialize test increment or
decrement

Vool

for (int x = 0; x < 100; x++) {
... code here ...

The for loop’s header has three parts:

Initialization: Declare an integer type variable (if it hasn’t been declared already) and set a starting value.
Test: A comparison involving the variable. The loop will execute until this comparison is false.
Increment or Decrement: An expression that increases or decreases the value of the variable.

In the example above, the code in the loop will run repeatedly, incrementing x after each iteration, until the comparison
‘x <100’ is false.

Sound

tone(p in , freq uency, durati on) » Generates a square wave on the designated pin, at the

designated frequency (50% on, 50% off), for the specified duration in milliseconds. The last parameter is optional; if
omitted, the tone will play continuously. The minimum frequency is 31 and the maximum is 65,535. On the Arduino Uno,
this function will interfere with Pulse Width Modulation [i.e., with the analogWrite() function] on Pins 3 and 11.

noTone(p] n) > Turns off the square wave generated by a previous tone() function on the designated pin.

115

Q
Q
(0]
Q
Q
Q
Q
Q
Q
Q

Match the third band to a chart below.
Then match the first two bands and read the value.

Resistor Decoder by Bret Victor

http://worrydream.com/ResistorDecoder/

Note: The fourth band is the resistor’s tolerance. Gold = 5%. Silver = 10%.

http://worrydream.com/ResistorDecoder/

