

An
Arduino
Reference
for
Experimental
Psychologists

Notes from a Workshop

Michael Perone
Department of Psychology
West Virginia University

2

Edition

First edition, created April 30, 2017

Author’s Contact Information

Michael Perone
Department of Psychology
West Virginia University
53 Campus Drive
Morgantown, WV 26506-6040
Michael.Perone@mail.wvu.edu

Acknowledgements

Descriptions of, and advice about, Arduino coding techniques, and
development of the sketches herein, were informed and guided by
material at www.arduino.cc and the Arduino Programming Notebook,
August 2007 edition, by Brian W. Edwards.

The circuit drawings were prepared with Fritzing software available at
www.fritzing.org.

The website https://arduino-info.wikispaces.com was a valuable
resource, particularly in preparing the circuits and sketches involving the
stepper motor and the infrared remote control.

A few illustrations were adapted from open-source materials designed by
Linz Craig, Nick Poole, Prashanta Aryal, Theo Simpson, Tai Johnson, and
Eli Santistevan of Sparkfun Electronics.

The physical computing schematic in Part 1 was contributed to the public
domain by Nevit Dilmen (Own work) [CC0], via Wikimedia Commons
(https://commons.wikimedia.org/wiki/File%3APhysical_computing.svg).

The “Anatomy of a C function” in Part 4 is from
https://www.arduino.cc/en/Reference/FunctionDeclaration.

The resistor decoder in the Quick Reference is by Bret Victor,
http://worrydream.com/ResistorDecoder/.

License

This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License

To see a copy of the license, visit:
https://creativecommons.org/licenses/by-nc-sa/4.0/

mailto:Michael.Perone@mail.wvu.edu
http://www.arduino.cc/
http://www.fritzing.org/
https://arduino-info.wikispaces.com/
https://commons.wikimedia.org/wiki/File%3APhysical_computing.svg
https://www.arduino.cc/en/Reference/FunctionDeclaration
http://worrydream.com/ResistorDecoder/
https://creativecommons.org/licenses/by-nc-sa/4.0/

3

Contents

Introduction .. 5

Part 1: Physical Computing & Basic Prototyping Materials

The Arduino Uno Microcontroller.. 6
Physical Computing .. 8
Building Prototypes with an Arduino and a Breadboard ... 10

Part 2: Sensors & Actuators
Buttons ... 11
Potentiometers and Their Kin .. 11
Advanced Sensors .. 12
Light Emitting Diodes (LEDs) .. 13
Piezo Speakers ... 13
Liquid Crystal Display (LCD) Panels .. 13
Motors.. 14
Personal Computers ... 15

Part 3: Circuit Elements
Resistors ... 16
NPN Transistors .. 16
Optcouplers .. 17
Relays ... 17

Part 4: Programming Elements
Arduino Integrated Development Environment (IDE) ... 19
Arduino Libraries .. 19
Basic Structure of an Arduino Sketch... 20
Variables and Constants .. 21
Array Variables ... 22
Arithmetic Operators ... 22
Comparison Operators ... 23
Boolean Operators ... 23
Functions .. 24

Part 5: Common Programming Tasks
Communication through the Serial Port .. 26
Timing... 28
Digital Input .. 30
Digital Output ... 34
Analog Input ... 35
Analog Output .. 36
Branching ... 38
Looping ... 40
Doing Math .. 40
Making Sounds ... 43

4

Part 6: Sample Sketches & Circuits

Blink (with circuit drawing) .. 45
Reading Serial Strings ... 46
Reading Serial Strings as Parameters (with circuit drawing) .. 48
Count Button Presses (with circuit drawing) ... 50
Count Button Presses Debounced ... 52
Adjustable Tone (with circuit drawing) .. 54
LCD Hello World (with circuit drawing) ... 56
LCD Recycling Hello World ... 60
Thermistor.. 62
Joystick Simple ... 63
Joystick Refined .. 64
Joystick RGB LED .. 66
Joystick Ultrasonic RGB LED ... 68
Servo Sweep ... 72
Photocell .. 73
Photocell Response Count ... 74
Two Buttons ... 76
Stepper Sweep ... 78
Stepper by Steps .. 79
Stepper by Degrees .. 80
Temperature Humidity Monitor .. 82
Remote Signal Reception ... 83
Remote Signal Decoding Elegoo .. 84
Transistor to Relay (with circuit drawing) .. 86
Optocoupler Test (with circuit drawing) .. 88
Analog IO with PWM (with circuit drawing) .. 90

Part 7: Exercises ... 92

Resources ... 94

Appendices

Overview .. 96
Elegoo Uno Project Super Starter Kit ... 97
Escobar & Perez-Herrera (2015) .. 98
Stepper 360 Dial ... 107

Quick Reference .. 109

5

Introduction

This document pulls together, in what I hope is a handy format, some topics explored in a “microcontroller
workshop” in the WVU Department of Psychology in the spring semester of 2017. This is not intended to be a
comprehensive treatment of anything in particular, but rather a compendium of information that I think is
interesting or useful. My conception of what is “interesting” or “useful” is that of an experimental psychologist
who sees microcontroller technology as a means of supporting basic research. Your individual needs may lead
you to a different opinion. Still, I hope there is enough overlap between us to make this material helpful to you.

The workshop was largely a show-and-tell: Each participant bought a kit
with an Arduino Uno microcontroller development board, a breadboard
and jumper wires, and a variety of devices for detecting events in the
world or making events happen in the world – this being the essence of
physical computing. Each week we assembled a few circuits with some of
the devices and paired each circuit with an Arduino “sketch” (program) to
make it go. The idea was to illustrate how you can handle inputs and
control outputs with relatively straightforward code and simple circuits.

We used the Elegoo Uno Project Super Starter Kit, and we fooled around with these devices:

• For input: buttons, potentiometer, joystick, photoresistor (a.k.a photocell), thermistor, DHT11 temperature

and humidity module, infrared receiver and handheld remote control

• For output: light emitting diodes (LEDs), liquid crystal display (LCD) panel, servo motor, stepper motor, active

buzzer, passive buzzer

• Circuit elements: resistors, NPN transistor, relay, 4N25 optocoupler (the last was my addition; it was not

included in the kit), and – of course – the Arduino Uno, breadboard, and jumper wires.

Some weeks into the semester, we recognized that our circuits were
suffering from loose connections, partly because the Arduino and
breadboard were separate parts that could move and put strain on the
jumper wires, and partly because the Elegoo breadboard was, well,
maybe not of the highest quality. We made improvements by using an
Adafruit mounting plate to hold the Arduino firmly aligned with a half-
size breadboard.

This Reference is organized into seven sections as described in the table
of contents. Parts 1 through 3 provide simple (one might say “simplistic”
– but give me some slack, I’m a psychologist, not an electrical engineer) descriptions of the hardware used in the
workshop. Part 4 describes essential elements of Arduino programming. This material is not comprehensive by
any stretch of the imagination, but it does cover what you need to know to get started on some serviceable
coding projects. Part 5 describes some ways to accomplish common tasks; these ways are not the only ways –
they may not even be the best ways – but they are fairly easy to understand and they work. Part 6 reproduces
some of the sketches and circuits we used in the workshop in case it may be useful to have them at hand. Part 7
offers some exercises to give you practice in coding.

You can find the official reference for Arduino programming at www.arduino.cc/en/Reference/HomePage. And
you can find an excellent set of tutorials at www.arduino.cc/en/Tutorial/HomePage. When you have a specific
problem to solve, a bit of Googling can be a time-saver: The members of the large Arduino programming
community have a wide range of interests and experience, and they are generous in sharing their knowledge.

https://www.amazon.com/Elegoo-Project-Tutorial-Prototype-Expansion/dp/B01D8KOZF4
https://www.adafruit.com/products/275
https://www.amazon.com/gp/product/B01DDI54II/ref=oh_aui_detailpage_o03_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B01DDI54II/ref=oh_aui_detailpage_o03_s00?ie=UTF8&psc=1
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Tutorial/HomePage

6

Part 1: Physical Computing &
Basic Prototyping Materials

The Arduino Uno Microcontroller

Here, shown larger than life, is the Elegoo company’s version of the venerable Arduino Uno Revision 3
(hereafter, “the Arduino”). This is an essential part our physical computing tool kit for building prototypes of
circuits that can sense and control environmental events.

The Arduino can be powered through a USB cable attached to a personal computer (PC). It also has a power jack
so it can be powered with a 9V battery or a plug-in power supply that provides between 7V and 12V. Regardless
of the power source, the Arduino will regulate the voltage downward: It operates at 5V.

Along the top of the Arduino (as it is oriented in this photo) are 14 digital pins numbered 0 through 13. These
can be configured as inputs to sense discrete (digital) events such as button presses, or as outputs to make
things happen by turning devices on and off. Pins 0 and 1 are used when the Arduino communicates with the PC
through the USB cable; to avoid interference, we won’t use them. Note that six of the pins are marked with
dashes: 3, 5, 6, 9, 10, and 11. These pins are capable of pulse width modulation (PWM) which is a method for
simulating analog output using digital pins. Digital devices have only two states on and off or, in electronic
terms, HIGH (5 volts for our Arduino) or LOW (0 volts). The state of an analog device is continuously variable.
Pulse width modulation simulates an analog output signal by alternating between HIGH and LOW at frequencies
established by the programmer. More information about PWM is in Part 5 of this Reference.

At the bottom right of the Arduino are six analog input pins numbered A0 through A5. Whereas a digital input
can detect only HIGH and LOW states (5V and 0V), an analog pin can detect a wide range of states anywhere
between 5V and 0V. More information about analog input is in Part 5. See also the Quick Reference section,
which includes a table summarizing the functions of all 20 of the input/output pins.

7

Also along the bottom of the Arduino are several power-related pins. Our interest is in the pins labeled 5V and
GND (ground, 0V). The 5V pin is akin to the positive terminal of a battery, and the GND pin is akin to the
negative terminal. There’s another GND pin on the top of the board, next to Digital Pin 13. Electric current
flows when an appropriate device completes a
circuit between 5V and GND. The circuit illustrated
at right turns on a light emitting diode (LED). The
positive lead of the LED is connected to 5V and the
negative lead is attached to GND via a resistor.
(Even though the Arduino’s power is modest, it
would burn out the LED quickly without that
resistor.)

In this circuit, the Arduino is not doing anything
interesting; it is just being used to power the LED.
We are treating the Arduino as if it were a battery.
Of course we want the Arduino to do more, such as
turning things on and off under the control of a
program.

The Arduino plays a more interesting role in the
second circuit, to the left. As before, the negative
lead of the LED is connected to GND through a
resistor. The positive lead, however, is connected
to Digital Pin 13. With this arrangement, we can
program the Arduino to use the pin to output
current to the LED, turning the LED on by setting
the pin to HIGH and turning it off by setting the
pin to LOW.

Programs that run on the Arduino are called
“sketches.” Sketches are written on the PC in a
variant of the C++ programming language and
uploaded to the Arduino through the USB cable.
The sketch will run continuously whenever the

Arduino is powered. To stop the sketch, you can disconnect the Arduino’s power source (e.g., by unplugging the
USB cable) or press the reset button mounted on the upper left corner of the board. The reset button only stops
the sketch momentarily: After about a second, it starts over.

Information and advice about writing Arduino code can be found in Parts 4 and 5, and over two dozen of the
sketches prepared for the workshop can be found in Part 6 (complete with embarrassing typographical errors in
the comments and awkward code here and there). Sketches can be written using the Arduino Integrated
Development Environment described in Part 4. It is available for free at www.arduino.cc.

http://www.arduino.cc/

8

Physical Computing

The term physical computing is applied to
arrangements of computer hardware and software
that interact with the environment by detecting
events and making things happen. The diagram
shows the essential parts. In our case, the
“interactive system” is the Arduino microcontroller
and the sketch that is running on it. The “real

world” is that part of the environment that can affect the Arduino or be affected by it. Sensors are devices that
provide a way for the environment to affect the Arduino through its input pins. Actuators are devices that
provide a way for the Arduino to affect the environment though its output pins or serial communications port.
Electronic circuits connect the sensors and actuators to the Arduino’s input and output pins, and the Arduino’s
software (the sketch) determines how the Arduino will interpret information from the sensors and control the
actuators.

Physical computing is ubiquitous in modern life. Consider your microwave oven. Its embedded microcontroller
interacts with the world by receiving your commands through a keypad. By pressing a few keys on the outside
of the oven, you can tell it how long to cook and at what power level. The microcontroller interprets your key
presses and activates devices that, for example, generate radio waves that heat your food and start the motor
that turns the food in circles. Your oven probably has some internal sensors, too, that transmit information to
the microcontroller about the state of the food you are cooking. For example, a sensor might measure the
temperature of the food and the microcontroller’s software may respond by turning off the radio waves and
carousel motor when the target temperature is reached.

As a physical computing system, the microwave oven interacts with a pretty small part of the world. Other
systems are more expansive. Home security systems employ a wide range of sensors to detect motion, the
sound of breaking glass, the concentration of carbon monoxide, smoke, water in places where it shouldn’t be,
and whether specific doors and windows are open. The systems can respond to the information from these
sensors by texting the homeowner, sounding an alarm, or
calling the police or fire department.

Physical computing is common in basic experimental
psychology. Researchers in the experimental analysis of
behavior could be said to have gotten an early start. A
precursor of today’s systems came into wide use in the
second half of the twentieth century thanks to B. F. Skinner
and Ralph Gerbrands of Harvard University. They developed
a system of controlling events in behavioral test chambers
and recording the responses of animals using circuits that
combined electromechanical switches, steppers, relays,
counters, motors, and timers. The system had sensors –
lever switches to detect behavior – and actuators – lamps,
speakers, and food dispensers for delivering stimuli. There
were no microcontrollers to control this stuff; instead, the
systems used rather sophisticated electromechanical circuits
such as the one behind B. F. Skinner in the photo at right.

(To learn more about this period in the history of
experimental psychology, visit the Behavioral Apparatus
Virtual Museum curated by Kennon A. Lattal at
aubreydaniels.com/institute/museum.)

http://aubreydaniels.com/institute/museum

9

Electromechanical control circuits were eventually replaced by
computer technology. First came minicomputers which, by
today’s standards, weren’t all that “mini.” When fully
equipped with the components needed to store programs and
data – components such as a paper tape puncher/reader
(surprisingly common in the 1970s because they provided
cheap storage) or disk drives (expensive) – a minicomputer
might stand six feet tall and anywhere from about two to five
feet wide.

The first mass-produced minicomputer was the PDP-8 from the
Digital Equipment Corporation. (“PDP” was short for
“Programmable Data Processor.”) It served as the hardware
platform for a programming language developed specifically to
control behavioral experiments and collect data. The
language, “SKED” (and later, “Super SKED” and “SKED-11”) was
designed by Arthur Snapper at Western Michigan University,
implemented on the PDP-8 (and later the PDP-11), and widely
used for about 20 years starting in the early 1970’s.

In the late 1980’s, Thomas Tatham, a behavior analyst trained
at Temple University, developed a variant of SKED for the
desktop microcomputers that had become popular. The
language, originally called Med State Notation, was first sold by
Med Associates, Inc. in 1987 along with a system of hardware
modules and cables to link the computer to behavioral test
chambers (the company also sold the chambers). The
language, renamed MED-PC, has been upgraded several times.
Today, Med’s software and hardware, in conjunction with a PC,
is probably the most widely used physical computing system in
experimental psychology.

The Med system has a significant limitation: it costs a lot of
money. A system based on the Arduino can be made without

much money, but it requires substantial technical knowledge plus the time and inclination to tinker and build.
The purpose of the microcontroller workshop is to introduce young behavior analysts to physical computing
with the Arduino, in the hope that some of them might be inspired to tinker and build.

Rogelio Escobar, a professor of psychology at the National Autonomous
University of Mexico, has achieved a high degree of technical sophistication
in the development of electronic equipment for experimental control and
behavioral recording. He has done magnificent work in creating physical
computing systems for the study of operant behavior, and he generously
shares his work – in both hardware and software – on his web site,
http://analisisdelaconducta.net/. His work is not restricted to physical
computing; he also has designed the experimental environments in which
behavior take place: the test chamber. His website includes files you can
use to build rat chambers using a 3D printer!

An article by Dr. Escobar and his student Carlos A. Perez-Herrera, published
in the Journal of the Experimental Analysis Behavior, is included as an appendix to this Reference. The article
describes a physical computing system that uses an Arduino to interface behavioral test chambers with a PC
running a Visual Basic program.

http://analisisdelaconducta.net/

10

Building Prototypes
with an Arduino and a Breadboard

Our Arduino is intended for building prototypes of physical
computing systems. Header strips mounted on the edges
of the board allow you to connect wires simply by pushing
one end into the header. Circuits with sensors and
actuators are built on a “breadboard” that has rows of tiny
sockets that likewise allow you to insert buttons, LEDs,
resistors, etc., by pushing their leads into the sockets and
to connect them to one another by pushing wires into the
sockets. Building circuits this way is relatively quick and
easy – no soldering – but the resulting product is fragile. If
you need a durable version of your circuit, you will need to
solder the microcontroller and various circuit elements together – a task beyond the scope of our little
workshop.

A typical breadboard, shown below alongside an Arduino, has four sections. The sections on each edge have two
vertical columns of sockets. The sockets in each column are connected to one another. This means that a wire
inserted into any socket within a column is electrically connected to the wires inserted into other sockets within

the same column. These
sections are called “power
rails” because they
normally are used as a
convenient way to get
GND and 5V to the parts
of a circuit. As in the
illustration, a wire is run
from a GND pin on the
Arduino to one of the
sockets in the column
labeled “—.” Now all the
sockets in that column are
connected to GND.
Another wire is run from a
5V pin on the Arduino to
one of the sockets in the
“+” column, so that the
sockets in that column are
connected to positive.

The two middle sections
are organized into
horizontal rows. Within

each section, the five sockets in each row are connected. This allows you connect various components without
solder. Consider the red LED in the illustration. One of its leads is connected to a resistor which itself is
connected to GND. The other lead is connected to a wire that is connected to Pin 6 of the Arduino.

As you build circuits on your breadboard, remember: The sockets on the power rails are connected vertically for
the full length of the board. The sockets in the middle sections are connected horizontally in sets of five.

11

Part 2:
Sensors & Actuators

Buttons

As already noted, digital inputs have two states, LOW and HIGH, corresponding to 0V (i.e., GND)
and 5V. If you are building a prototype circuit, the simplest way to figure digital input into the
design is with an electrical switch, commonly in the form of a push button. In our workshop, we
use a common button like the one shown here. It has two sets of leads, each pair constituting
the end points of a switch. Pressing the button connects the two leads. If the switch is in a
properly designed circuit, pressing the button causes electrical current to flow across the leads.

Although there are two switches in this device, there is only one button and pressing it operates the left switch
and the right switch simultaneously. The button is designed to be mounted across the gap running down the
middle of your breadboard. This keeps the left switch and the right switch from interfering with one another.

The illustration at right
shows the kind of circuit
to use with buttons in
our workshop. One lead
of the button’s right-side
switch is connected to
GND through the power
rail section of the
breadboard. The other
lead is connected to Pin
2 of the Arduino.
Pressing the button
closes the switch
between these two leads, sending GND to the Arduino. More information about how the Arduino’s pins handle
input from buttons can be found in Part 5 (“Common Programming Tasks”) in the section labeled “Digital Input.”

Potentiometers and Their Kin

A potentiometer – “pot” for short – is a variable resistor. At bottom left is a photo the underside of a common
pot that fits into a breadboard. It has three leads. The “side” leads are the ones in the back of the photo and the
“middle” lead is the one in front. On the top of the pot is a screw slot or a knob that can be turned. This varies
the resistance between the side leads and the middle lead. In the breadboard illustration, one side lead is

connected to 5V and the other
to GND. The middle lead is
connected to one of the
Arduino’s analog inputs. As
the pot is turned, the voltage
on the middle pin is varied
from 0V to 5V.

12

The pot is a great model for a variety of analog sensors.
In our workshop we work with photoresistors and
thermistors. These work on the same principle as the
pot; the key difference is that resistance is varied not by
turning a knob but rather by changes in light or
temperature. When our photoresistor is wired as
shown here, there is a direct relation between the
intensity of the light falling on it and the voltage sent to
the Arduino. With our thermistor wired in the same

way, there is a direct relation
between the temperature
near its surface and the
voltage sent to the Arduino.

We also played with a joystick. This device is just a pair of potentiometers. The
resistance of one is changed by moving the stick vertically; the resistance of the other
is changed by moving the stick horizontally.

Advanced Sensors

We played with some more sophisticated sensors:

• DHT11 to measure temperature and humidity
• HC-SR04 Ultrasonic Ranging Monitor to measure distance
• Infrared remote control and IR detector/demodulator to receive inputs from a handheld remote control

These devices are easy to connect to the Arduino; see the circuit notes in these sketches in Part 6:

• DHT11: Temperature Humidity Monitor
• HC-SR04: Joystick Ultrasonic RGB LED
• Infrared remote: Remote Signal Reception & Remote Signal Decoding Elegoo

The devices area also surprisingly easy to use within a
sketch because each is supported with special libraries
that give you access to functions to program the Ardunio
to interact with the devices and convert the input into
meaningful forms (e.g., measures of temperature and
humidity information) with little or no calculation. (I’ll say
a bit more about Arduino libraries in Part 4.) Here are the
libraries we used for these devices:

• DHT11: SimpleDHT
• HC-SR04: NewPing
• Infrared remote: IRremote

For more information about these devices, see:

• DHT11: https://learn.adafruit.com/dht/
• HC-SR04: https://www.cytron.com.my/p-sn-hc-sr04
• Infrared remote: https://arduino-info.wikispaces.com/IR-RemoteControl

Potentiometer (left) and photoresistor

https://learn.adafruit.com/dht/
https://www.cytron.com.my/p-sn-hc-sr04
https://arduino-info.wikispaces.com/IR-RemoteControl

13

Light Emitting Diodes (LEDs)

LEDs are highly efficient lamps and put out a bright light with relatively little electrical
current. They have two leads. The longer lead is positive (or “anode) side of the circuit
and the shorter lead is the negative (or cathode). The output of an Arduino digital pin
will overpower a standard LED, so a resistor must be added in series to reduce the
current. The resistor will dim the LED as well. If you want a bright light, use a 220-ohm
resistor. If you want something dimmer, try stronger resisters until you find something
that suits your needs.

In my circuits – in our workshop as in the illustrations in this Reference – the LED’s negative lead is connected to
GND through a 220-ohm resistor, and normally an Arduino output pin is attached to the positive lead. Setting
the pin to HIGH lights the LED. You may encounter circuits that put the resistor on the other side – the negative
lead is connected directly to GND and the positive lead is connected to the Arduino through the resistor. Both
arrangements accomplish the same results.

In schematic circuit diagrams, an LED is shown by this symbol:

Our workshop also uses a special LED: the “RGB LED. “ This is essentially a
combination of three LEDs in a single package with a common GND lead. It’s fun
to use because by varying the signal to the Red, Green and Blue leads, you can
create light of any color. The signal can be varied by adjusting the voltage or by
using the analogWrite() function discussed in Part 5.

Piezo Speakers

We can produce sound using the piezo speaker in our Elegoo kit. This simple
device can be operated directly by an Arduino digital output, but it produces
sound at low volume. The speaker has two leads. The
one marked as positive (see the + sign with a circle
around it in the photo) is connected to the Arduino

output pin; the other is connected GND. The Arduino’s tone() function sends the signals
to the speaker to produce the sound. To make louder sounds with the Arduino, the signal
can be sent to an amplifier and then on to a proper 4- or 8-ohm speaker. Low-cost
amplifiers can be found at various sources including www.adafruit.com.

Liquid Crystal Display (LCD) Panels

Our Elegoo kit included a 2 x 16 LCD Display. This device can display 2 lines of 16 characters each. LCDs are easy
to program, but they require a lot of wiring. If your goal is to provide your sketch with a means of
communication – for example, to show the values of
variables as the sketch runs – then it will be much
easier to use the serial monitor that is included in the
Arduino IDE (see Part 5 for information about how to
use the serial monitor). If your goal is to create a self-
contained device that displays information – for
example, temperature, humidity, counts of behavior –
then an LCD may be a good choice.

http://www.adafruit.com/

14

LCDs have a parallel interface: The Arduino has to manipulate several pins on the LCD at once to control the
display. The interface consists of these pins:

• A register select (RS) pin that controls where in the LCD's memory data are written. You can select either the

data register, which holds what goes on the screen, or an instruction register, which is where the LCD's
controller looks for instructions on what to do next.

• A Read/Write (R/W) pin that selects reading mode or writing mode
• An Enable pin that enables writing to the registers
• 8 data pins (D0 -D7). The states of these pins (HIGH or LOW) are the bits that you're writing to a register

when you write, or the values you're reading when` you read.
• There's also a display contrast pin (Vo), power supply pins (+5V and Gnd) and LED Backlight (A and K on the

LCD in our kit) pins that power the LCD, control the display contrast, and turn on and off the LED backlight,
respectively.

The process of controlling the display involves putting the data that form the image of what you want to display
into the data registers, then putting instructions in the instruction register. The LiquidCrystal library simplifies
this for you so you don't need to know the low-level instructions. The library allows you to control LCDs that are
compatible with the Hitachi HD44780 driver, and our LCD fits this description.

Hitachi-compatible LCDs can be controlled in two modes: 4-bit or 8-bit. The 4-bit mode requires fewer I/O pins
from the Arduino. For displaying text on the screen, you can do most everything in 4-bit mode. The sample
sketches in Part 6 show how to control a 2x16 LCD in 4-bit mode. Also included in the sketches is pin-by-pin
instructions on how to wire the LCD’s interface to the Arduino. See “LCD Hello World” and “LCD Recycling Hello
World.”

Motors

Our kit includes three motors: a conventional direct-current (DC) motor, a servo motor, and a stepper motor.
The leads on the DC motor were so flimsy – mine kept falling off and had to be re-soldered several times – that I
decided not to use it in our workshop.

A conventional DC motor is designed to rotate a shaft continuously, with the speed of rotation proportional to
the applied voltage. A servo motor is designed to rotate the shaft through a 180-degree arc, moving in either
direction. A stepper motor can rotate the shaft through the entire 360 degrees. The key feature of servos and
steppers is that you can exert fine control over the position of the shafts. They are used in systems with
mechanical parts that must be moved precisely, such as copy machines, scanners, 3D computers, and robots.

https://www.arduino.cc/en/Reference/LiquidCrystal

15

Programming servos and steppers with the Arduino is straightforward because well-developed libraries provide
easy-to-use functions. The libraries in the workshop are named, appropriately, “Servo” and “Stepper.”

The motors in our workshop are popular models, and you can find a lot of information about them online. Our
servo is the Tower Pro Micro Servo SG90 and the stepper is the 28BYJ-48. A tutorial on the servo is at

https://www.intorobotics.com/tutorial-how-to-
control-the-tower-pro-sg90-servo-with-arduino-uno/.
A guide to the stepper is at https://arduino-
info.wikispaces.com/SmallSteppers.

Information about connecting the servo and stepper
to the Arduino can be found in these sketches in Part
6: “Servo Sweep,” ”Stepper Sweep,” “Stepper by
Steps,” and “Stepper by Degrees.” The stepper came
with a printed circuit board that interfaces it with the Arduino (see photo at left), so the connections are easy.

Personal Computers

It may seem odd to include the PC in this discussion, but in fact it can serve both as a sensor (input device) and
as an actuator (output device). In our workshop the PC is used for both functions by communicating with the PC
through the serial monitor built into the Arduino IDE. See Part 5 of this Reference for information on how to
incorporate serial communication into an Arduino sketch and see Part 6 for many sketches that incorporate
serial communication for output (e.g., “Count Button Presses”). Some sketches use the PC as an input device;
see, in particular, “Reading Serial Strings” and “Reading Serial Strings as Parameters.” Finally, among the
appendices is an article by Escobar and Perez-Herrera (2015) that describes how to use the Arduino to interface
behavioral test chambers with a PC running a Visual Basic program.

https://www.intorobotics.com/tutorial-how-to-control-the-tower-pro-sg90-servo-with-arduino-uno/
https://www.intorobotics.com/tutorial-how-to-control-the-tower-pro-sg90-servo-with-arduino-uno/
https://arduino-info.wikispaces.com/SmallSteppers
https://arduino-info.wikispaces.com/SmallSteppers

16

Part 3:
Circuit Elements

Resistors

Resistors are electronic components that limit the flow of electrons through a
circuit. The amount of electrical resistance is measured in “ohms,”
commonly symbolized with the Greek letter omega:

Ω

In schematic diagrams of circuits, a resistor is show by this symbol:

The resistance is designated by bands on the component. The first two bands represent the most significant
digits of the resistor’s value. The third band is a multiplier. The last band is either gold or silver and indicates
the tolerance (error) in the resistor: gold = 5%, silver = 10%. This bit of information also allows you to orient the
resistor: The gold or silver band is the last. A handy chart to decode the bands of a resistor is included in the
Quick Reference section.

Resistance is related to electric current and voltage in an orderly fashion. Think of electric current as the flow of
electrons; it is measured in amperes (abbreviated “A”). Voltage is electric pressure, measured in volts. Ohm’s
Law puts them all together:

R = V/I or I = V/R or V = I x R

where R = resistance, V = voltage, and I = amps . If you don’t like “I” as the expression for electrical current,
blame the French: It stands for “intensité de courant,” the French term for current flow. (In case you’re
wondering: Georg Ohm, for whom the law is named, was German.)

Ohm’s Law is helpful when you need to figure out how much resistance to put into a circuit to limit the flow of
current. In our workshop, we generally power LEDs with 5V from the Arduino, but we add a 220-ohm resistor.
So we limit the current to .023 amp. Plugging 5 and 220 into I=V/R gives us I = 5/220 = .023 amp or 23 milliamps
(23 mA).

A nice tutorial on resistors is at https://learn.sparkfun.com/tutorials/resistors#power-rating

NPN Transistors

The NPN transistor is a common bi-polar junction transistor that can be used as an electronic switch. A very low
current can be used to operate the transistor, and the transistor can switch higher currents. It might help to
relate to this a switch you encounter every day: the light switch on the wall of your office. It takes almost no
energy to operate the switch (you can flick it on or off with a finger) but the switch itself can handle a lot of
energy – enough to turn on the overhead fluorescent lights and light up the entire room.

https://learn.sparkfun.com/tutorials/resistors%23power-rating

17

Our Arduino’s power supply is limited: It can supply up to about 40 mA
from each pin. That is not enough to drive some (many) actuators. The
transistor comes to the rescue: The Arduino has enough juice to operate
it. By turning the transistor on and off, the Arduino can control devices
that require higher currents, just as you can control currents high
enough to light a room by flicking a wall swtich.

Our Elegoo kit includes a widely used general-purpose transistor, the
PN2222A. To operate it, positive voltage is to the “Base” pin. This
creates a connection between the “Collector” and “Emitter” pins. We
can use an Arduino digital output pin to operate the transistor – a very
low current will be drawn – and let the higher current flow across the
Collector and Emitter to operate the actuator that draws a lot of current.

In our workshop we use the transistor to control a relay that requires
more juice than our Arduino output pins can provide. The sketch and
circuit are in Part 6; see “Transistor to Relay.”

For a good tutorial bi-polar junction transistors, see https://learn.sparkfun.com/tutorials/transistors.

Optocouplers

An optocoupler – also known as an optoisolator – is a transistor that is operated by light rather than by the
application of an electric current. This allows you to have two power sources communicate safely – when, for

example, relatively high-voltage devices in the lab must be sensed by
the low-voltage Ardunio. It can be used to protect the Arduino from
high voltages.

Here is the circuit diagram of the 4N25 optocoupler, a widely used
model, alongside a drawing of the chip. This is the one in our
workshop (it is not included in the Elegoo kit, however). To orient the
chip, look for a little circle in one corner; this marks Pin 1. (It won’t

be as easy to see as the one in the drawing.) From there, the pins are numbered sequentially in counter-
clockwise order. Passing current across Pins 1 and 2 lights an internal infrared LED. This causes the internal
phototransistor to close the circuit between Pin 4 (the transistor’s Emitter) and Pin 5 (the Collector) . The
infrared LED can handle relatively high voltages (with an appropriately sized resistor in series with it), and the
idea is to run the high-voltage output of lab devices across Pins 1 and 2. If we run the Arduino Uno’s 5V current
across Pins 4 and 5, we can send 5V back to the Arduino to detect the input.

More information is available in Part 6; see “Optocoupler Test.”

Relays

Whereas a transistor is an electronic switch (with no moving parts), a relay is an electromechanical switch. It
consists of an electromagnetic coil and a switch. Running current through the coil creates a magnetic field that
pulls the switch into place. When the current is removed, the magnetic field collapses and the switch returns to
its “normal” or resting position.

Our transistor. To identify the pins,
orient the transistor so the flat side is
facing you. Then, from left to right, are
the 1. Emitter, 2. Base, and 3. Collector.

https://learn.sparkfun.com/tutorials/transistors

18

A small amount of electricity can energize the coil and move the switch. The
switch itself, however, can handle high currents at high voltages. Our Elegoo
kit includes a Songle SRD-05VDC-SLC-C Relay, which is widely used in
microcontroller applications. A 5V direct-current power supply, such as the
one on board our Arduino Uno, is all that is needed to operate it, but it can
switch 10 A at 125 V of alternating current – enough to turn household
appliances on and off.

Although the Arduino’s power
supply has enough juice to
operate the relay, the output pins
themselves are limited to about
40 mA, and that’s not enough.
But we can overcome this
limitation by using the output pin
to operate a transistor, and let the
transistor switch the higher current required by the relay. More
information is in Part 6; see “Transistor to Relay.”

When the relay is in its normal state, there is an electrical connection between the “Common” pin and the
“Normally Closed” pin. When the relay is operated – that is, when its coil is energized – the switch moves,
disconnecting the Common pin from the Normally Closed pin and creating, instead, a connection between the
Common pin and the “Normally Open” pin. You can hear this happening: Moving the switch makes an audible
click. To energize the coil and operate the relay, one side of the coil must be connected to positive voltage and
the other side to GND.

Circuit diagram as viewed from the
top of the Songle relay. Pinout,
counter-clockwise from top left: 1.
Operate coil, 2. Common of switch,
3. Operate coil, 4. Normally open
side of switch, 5. Normally closed
side of switch.

19

Part 4:
Programming Elements

The Arduino Integrated Development Environment (IDE)

Probably the most common tool for
writing Arduino sketches and
uploading them to your Arduino is
the integrated development
environment that is available for
free at www.arduino.cc. Here you
can download versions of the IDE
for the Windows, Mac OS X, and
Linux operating systems. You can
also find straightforward
instructions for installing the IDE
and getting started writing
sketches.

Arduino Libraries

The Arduino programming language
accessible within the IDE is a
variant of C/C++. Its capabilities
can be extended with libraries. A
library adds functions beyond those
available within the base language.

Many libraries have been designed
to help you write code for specific
sensors or actuators. Such libraries
do most of the heavy lifting in
terms of highly technical code,
allowing you to concentrate on the purpose of your sketch and write code that is more straightforward.

The IDE comes with many popular libraries, and adding them to your sketch is simple. You just select the library
from the pull-down menu accessed by clicking Sketch and then Include Library (see above). Or you can manually
add the code that references the library. For example, suppose you want to use the “Servo” library. You could
click Servo in the library menu, or you could add this code at the top of your program: #include <Servo.h>

After the reference to the library has been added to your sketch, you can use any of the library’s functions in
your sketch. Of course you have to know about the functions to be able to use them, and unfortunately the
quality of the documentation for libraries is uneven. The best documentation is for the libraries listed at
www.arduino.cc (e.g., check out the documentation for the Servo library at
https://www.arduino.cc/en/Reference/Servo).

You can install additional libraries – and add them to the menu – by following these directions:
https://www.arduino.cc/en/Guide/Libraries.

http://www.arduino.cc/
http://www.arduino.cc/
https://www.arduino.cc/en/Reference/Servo
https://www.arduino.cc/en/Guide/Libraries

20

Basic Structure of an Arduino Sketch

In the Arduino IDE, a blank sketch page looks like this. The sketch must include the setup() and loop() functions.
Code in the setup() function will run just once, when your sketch starts. The sketch starts when either the
Arduino is powered or the reset button is pressed. Code in the loop() function will run from top to bottom and
then repeat as long as the Arduino has power or the reset button is left alone.

The space above the setup() function is where you should put references to libraries. This is also the place to
declare variables and constants that are available to (can be “seen by”) the entire sketch. The space below the
loop() function is a good place to put the code for any functions that you may provide. I’ll say more about
variables, constants, and user-created functions later in Part 4.

Curly braces – { } – define the beginning and end of functions and some other blocks of code such as “if” blocks
(more on “if” in Part 5, “Branching”). A opening brace must be followed eventually by a closing brace.

A semicolon marks the end of a statement. Forgetting to end a line of code with a semicolon will lead to errors
when you compile the program. Because the error messages in the Arduino IDE are primitive by today’s
standards, you may have trouble figuring out what’s wrong. When you get a confusing compiler error, start by
looking for places where you forgot to type a semicolon.

Comments are preceded, on a line by line basis, by two forward slashes: //. A multi-line comment can be
preceded by /* and terminated by */. There are many examples in Part 6.

“Compiling” means translating your sketch, which is written in a language for
humans (believe it or not), into machine language that can be executed by the
Arduino’s central processor, the Amtel ATmega328/P. You can compile your
sketch by clicking the first control at the upper left of the IDE window – the
circle with the check box. If there are problems, error messages will appear at

the bottom of the window. If your code passes muster, the message will be “Done compiling”.

You also will make good use of the second control – the circle with the right-pointing error. Clicking it compiles
the sketch and, if it passes muster, uploads it to the Arduino through the USB cable.

A final point: Be careful about upper and lower case. The compiler won’t correct your typos.

Add library references
and declare global
variables up here.

If you add your own
functions, put them
down here.

21

Variables and Constants

Variables are locations in a computer’s memory that can store data and have a name (hopefully one that is
meaningful to the programmer). The content of a variable is sometimes called its value. Values can change as a
sketch is executed. For example, you might use a variable to keep track of the number of times a rat presses a
lever; your sketch would increment the value with each press.

Variables are classified by the kind of data they are capable of storing. These are the classifications in our
workshop:

• int: This class of variable can store an integer (a whole number) between -32,768 and 32,767.
• long: An integer that can vary from -2,147,483,648 to 2,147,483,647.
• float: This is for floating-point numbers, that is, numbers with a decimal point.
• String: This holds text, that is, a string of characters (note the upper-case ‘S”).
• boolean: A variable of this type can hold either of two values: true or false.

Integers are processed faster that floating-point variables. Unless a floating-point number is essential, use
integers.

You declare (create) a variable by stating the data type followed by the name you want to use:

• int respCount;
• long sessionTime;
• float respRate;
• String ratID;

You can store a value in a variable when you declare it. For example:

• int interTrialInterval = 5000;
• boolean reinforcerIsReady = false;

Constants also are locations in a computer’s memory that have a name and can store data. They differ from
variables in that their values are fixed. Once a constant is declared, its value cannot be changed. Constants are
used to make code more readable. For example, if an intertrial interval is going to be 5,000 milliseconds
throughout an experimental session, it is prudent to declare a constant with a meaningful name. Your code will
make more sense if it refers to something meaningful like “interTrialInterval” rather than “5000”. You declare a
constant by putting const before the data type in the declaration statement and assigning the fixed value:

• const int interTrialInterval = 5000;
• const String ratID = “Chewa”;

Variables and constants have a property called scope. When the scope is global, the variable or constant can be
“seen” by any function throughout the sketch. To be global, a variable or constant must be declared at the top
of the sketch, before the setup() function.

When a variable (or constant) is declared within a function, it is local to that function. A local variable can be
seen only by the function in which it was declared.

The Arduino IDE includes some pre-established global constants, including: HIGH, LOW, INPUT, INPUT_PULLUP,
OUTPUT, LED_BUILTIN, true, false. You can read about them at www.arduino.cc/en/Reference.

http://www.arduino.cc/en/Reference

22

Array Variables

An array is a collection of variables with a single name, differentiated by an index number. The most common
way to declare an array is this:

int responseLatency[100];

This statement would create an array of 100 integers, with index values from 0 to 99. The first element in the
array would be responseLatency[0] and the last would be responseLatency[99]. Note that the index is enclosed
within square brackets, not parentheses. That’s to differentiate array variables from functions.

You can create an array of any data type: int, long, float, String, Boolean, and so forth.

Arrays are often used within for loops (discussed in Part 5 in the section on “Looping”) where the loop counter is
used as the index for each element of the array. With just a few lines of code, tens, hundreds, or thousands of
elements can be accessed. Arrays allow for highly efficient coding.

Arithmetic Operators

Arithmetic is, for the most part, straightforward. Here are the operators :

= Assignment operator, e.g. x = 3 assigns x the value of 3. Not to be confused with == which is a

comparison operator.

+ Addition

- Subraction

* Multiplication

/ Division

% Modulo. Returns the remainder when one integer is divided by another. If x = 17 and y = 5 then x % y
returns 2.

The key thing is to recognize that a single equals sign (=) tells the compiler to assign a value, with the flow of
information going from right to left. Some examples:

• ratID = “Chewa”; // puts the string “Chewa” into ratID
• ITI = 3000; // puts the number 3000 into ITI
• oldTime = newTime; // puts the value of newTime into oldTime
• sum = trialOne + trialTwo; // adds the value of 2 variables and

puts them into sum

23

Comparison Operators

These operators are used to compare two values, normally within some kind of decision-making structure (see
“Branching” in Part 5). The key thing here is the comparison to see if two values are equal. The comparison
operator consists of two consecutive equals signs (==), which is to distinguish the comparison of values from the
assignment of values as described above. For example, this code is valid:

 if (digitalRead (respPin) == LOW){ // input detected
 respCount = respCount + 1; // so count it
 }

This code, with just one character missing (the second ‘=’) is invalid:

 if (digitalRead (respPin) = LOW){ // input detected
 respCount = respCount + 1; // so count it
 }

The problem is two-fold. First, this is an easy mistake to make. Second, the compiler will not catch it; both
blocks of code will pass muster. Yet the code in the second example will not yield the desired results. And you
might read, re-read, and re-re-read your code without finding your mistake. You have been warned.

== Equal to. Not to be confused with = which is the arithmetic assignment operator.

!= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

Boolean Operators

In Boolean logic (named after 19th century mathematician George Boole), expressions are either true or false,
and comparisons involving these expressions also are true or false. An “expression” could be a constant, a
variable, or a comparison. The Boolean operators are “and”, “or”, and “not”, symbolized as follows:

&& Logical “and”

|| Logical “or” (these characters are typed by pressing your keyboard’s back-slash key with the Shift key
held down)

! Logical “not” (negation)

Consider this bit of code:

 if ((digitalRead (respPin) == LOW)&& reinforcerIsReady{
 respCount = respCount + 1; // count response
 digitalWrite (reinforcerPin, HIGH);// turn on reinforcer
 }

24

The parenthetical material in the if statement has a comparison [digitalRead (respPin) == LOW] and a Boolean
variable (take my word for it), reinforcerIsReady. If the comparison is true and the variable is true, then the if
statement is true and the next two lines of code will be executed.

The following table shows the results of the Boolean operations with different combinations of X and Y values.
In the table X and Y could be Boolean variables, Boolean constants, or expressions yielding Boolean results (i.e.,
the result of the expression would be true or false).

• X && Y is true only when both X and Y are true.

• X || Y is true when either X or Y (or both) is true.

• ! X is the negation of X; the expression is true when X if false, and false when X is true.

Functions

A function is a block of code that performs some well-defined duty (it carries out a function) and can be called to
action by other code within the sketch. Much of the Arduino programming system consists of predefined
functions. Here are a few examples, all of which are described in more detail in Part 6 and in the Quick
Reference.

• sqrt(x) – This function accepts one parameter: a number or a variable containing a number. It
calculates the square root of that number and returns the result.

• noTone(p) – This function accepts one parameter: the number of an output pin that is being used to

play a tone. It stops the tone. It returns nothing.

• millis() – This function accepts no parameters. It returns the time since the Arduino started, in
milliseconds. You might wonder why the parentheses are needed when the function accepts no
parameters. The parentheses designate that “millis” is the name of a function.

Although each of these functions performs a specific action, they differ from one another in certain ways. Two
of them need information (parameters) from the programmer in order to perform the action [sqrt(), noTone()].
One needs no parameter but returns a value [millis()]. One needs a parameter but returns no value [noTone()].

You are not limited to the built-in functions. Arduino libraries add specialized functions to serve a variety of
purposes, often in connection with a specific sensor or actuator. And you can write your own functions. If your
sketch needs to carry out a set of instructions more than once, you can put those instructions into a function
and then call that function from anywhere in your sketch.

To declare a function that returns a value, you must (a) indicate the type of value to be returned (e.g., int, long,
float, Boolean, etc.), (b) provide a name for the function, and (c) list the parameters, if any, that the function will
receive. The function’s code must be enclosed within curly braces and it must end with a return statement that
designates the information to be sent back to the section of the sketch that called the function.

25

To declare a function that does not return a value,
you must (a) begin with the word void, (b) provide
a name for the function, and (c) list the
parameters, if any, that the function will receive.
Again, the function’s code must be enclosed
within curly braces, but there is no return
statement.

In the example at right, the myMultiplyFunction()
is designed to receive two ints, multiply them, and
return the result as an int.

The part of the sketch that calls the function could
look like this:

totalResponses = myMultiplyFunction(responsesPerTrial, trials);

Here I am assuming that totalResponses, responsesPerTrial, and trials are previously declared ints.

Suppose your sketch is controlling an operant conditioning session in which a pigeon sometimes earns 2-s access
to food and sometimes earns 6-s access. You could accomplish this with a function that accepts two
parameters: the output pin that is wired to the food hopper and the amount of time the hopper should be
raised to give the pigeon access to the food. The function might be:

void raiseHopper(int hopperPin, int milliseconds) {
 // This function raises the hopper, waits, then lowers the hopper
 digitalWrite(hopperPin, HIGH);
 delay(milliseconds);
 digitalWrite(hopperPin, LOW)
}

To give the pigeon 2-s access to food, the sketch in the loop() might say:

 if (respCount >= fixedRatio) {
 raiseHopper(3, 2000);
 }

Here I am assuming that the hopper is controlled by Pin 3.

The order of the parameters is important: The values in the calling statement must line up with the variables in
the function’s declaration. In this example, raiseHopper() understands 3 as the output pin for the hopper and
2000 as the duration because the function’s declaration lists the pin first and the duration second.

Your code can pass parameters to a function in the form of literal values (e.g., 3, 2000) or in the form of
variables or constants that store appropriate values. Suppose int “feeder” stores the number of the pin wired to
the hopper and int “access” stores the number of milliseconds the hopper should be raised. The calling code
could be

raiseHopper(feeder, access);

For more about writing functions, see https://www.arduino.cc/en/Reference/FunctionDeclaration.

https://www.arduino.cc/en/Reference/FunctionDeclaration

26

Part 5:
Common Programming Tasks

Communication through the Serial Port

The USB cable that you use to transfer sketches to
the Arduino IDE on your personal computer (PC)
also allows the PC to communicate with the sketch
as it runs on the Arduino. The communications
protocol uses Digital Pins 0 and 1, and that is why
you rarely encounter sketches in which these pins
are used for general input-output purposes.

The easiest way for the PC and Arduino to
communicate is through the serial monitor that is
built into the Arduino IDE. You can activate the

serial monitor via the “Tools” tab in the IDE’s menu bar. A pull-down menu in the lower right corner of the
monitor’s form allows you to set the baud rate, which is the speed of communication in bits per second. The
monitor’s baud rate must match the baud rate
in your sketch (more on this below). The
default rate of 9600 baud is commonly used.

The field at the top of the serial monitor form is
used to send information to the Arduino: Just
type what you want and click the “Send”
button. The large field, the one that occupies
most of the form, displays information that the
Arduino sketch sends to the PC.

You can write your own programs to establish communication between a PC and an Arduino. One might
imagine a program on the PC that allows an experimenter to enter the parameters of an experiment and send
them to the Arduino. The Arduino sketch, in turn, would receive the parameters and use them in controlling an
experimental session. The article by Escobar and Perez-Herrera (2015), included as an appendix, provides an
illustration.

When you send information to the Arduino through the serial
monitor, the information is received as a string of characters.
You may, however, wish to convert the information into a
number. This can be accomplished by saving the received
information into a String variable and then using the toInt()
function which returns a long number. In Part 6, the sketch
“Reading Serial Strings as Parameters” shows how to use the
toInt() function. Sample output from the sketch is shown at left.

The Arduino supports a lot of serial communication functions
(see www.arduino.cc/en/Reference/Serial). Reviewed here are
the ones that are used in the sample sketches in Part 6 of this
Reference.

http://www.arduino.cc/en/Reference/Serial

27

Serial.begin(baud);

This function sets up the communications link between the Arduino and the PC. The “baud” parameter is
replaced with a number representing the desired baud rate (e.g., 9600). It should appear in the setup() function
of your sketch. Example:

Serial.begin(9600);

Serial.setTimeout(milliseconds);

This sets the amount of time, in milliseconds, that the sketch will spend reading the serial port before moving
on. This function should appear in the setup() function of your sketch. The default is 1000, that is, 1 second.
That’s a long time to wait. If you anticipate short strings, the time limit can be brief. I suggest that you play with
different limits to see what suits your purpose. Example:

Serial.setTimeout(10);

Serial.available()

This function returns the number of characters that are available to be read from the serial port. The characters
are in the serial receive buffer and waiting to be read. If the result is 0, then there is nothing in the buffer, that
is, nothing to read. This function is commonly used within an “if” structure. If the function returns a value
greater than zero, we know there is something to read and we can take appropriate action. For example,

if (Serial.available() > 0) { // characters are in the buffer, so read them

Serial.readString()

This function tries to read a string of characters from the serial port. If will persevere until it reaches the time
limit imposed by the “Serial.setTimeout()” function. Here is an example in which the string is read and saved in
a string variable, then converted to a number for further processing.

if (Serial.available() > 0) {
 // yes, there are characters in the buffer, read them into string variable
 String inputString = Serial.readString();
 // if possible, convert the string to a number and store it
 // if the string does not beging with a numeral, a zero is returned
 long number = inputString.toInt();

Serial.print(string); and Serial.println(string);

These two functions send a string of characters from the Arduino through the serial port to the PC. They differ
in one respect: “print” simply sends the string whereas “println” sends the string and follows with a newline
character that causes the next string to be printed on a new line. The “string” parameter can be a string
variable or a literal such as “Number of Responses.” Example:

Serial.print(“Lever Presses: “);
Serial.println(responseCount); // responseCount is an integer variable

If responseCount held a value of 27, the following would appear in the serial monitor:

Lever Presses: 27

28

Most of the sketches in Part 6 incorporate serial communication. These include “Reading Serial Strings,”
“Reading Serial Strings as Parameters,” “Count Button Presses,” “Count Button Presses Debounced,” “Joystick
Simple,” “Joystick Refined,” and many more.

Timing

There are four timing functions available to Arduino programmers, two for creating delays and two for marking
the time.

delay(milliseconds);

This pauses the sketch for the specified number of milliseconds (one-thousandth of a second). For example:

delay(1000); // pause for a second

It is important to understand that “pausing” the sketch means that the main loop is halted during this time: no
inputs are read, no outputs written, no conditions tested, no calculations made. In some circumstances, this
may be exactly what you want. In other circumstances, you may need timing to go on concurrently with other
tasks. This can be accomplished using the millis() function described below – and some additional coding.

delayMicroseconds(microseconds);

This function pauses the sketch for the specified number of microseconds (one-millionth of a second). This
should be used only when very, very short pauses are required, otherwise use delay(). For example:

delayMicroseconds(100); // pause for a tenth of a millisecond

The maximum allowable pause with this function is 16,383 microseconds, or in other words, 0.016383 second.

millis()

This function returns the time in milliseconds since the Arduino began running the current sketch – that is, since
the Arduino was powered up or reset. This number will overflow (go back to zero), after approximately 50 days.
As long as your sketch does not run for that long, you should be in good shape. Because the result of millis() can
be such a large number, use a long variable, rather than an int, to store the result.

long currentMilliseconds = millis(); // mark the time

Calculating the time between events is straightforward: The formula is Current Time – Time of Previous Event.
For example, to calculate the time between successive button presses, you would follow these steps: (a) Record
the time of the first press. (b) At the second press, get the current time and subtract the time of the first press.
This yields the time between the two presses. (c) Record the time of the most recent press so that you can
repeat the calculation when another press occurs. Here is some code that would accomplish the task, assuming
it is in the main loop of the sketch. After each press, the code prints (to the serial port) the time that has
elapsed since the previous press. (For simplicity, I’ve omitted the code to declare the variables, set up serial
communication, and detect the presses.)

interResponseTime = millis() - previousResponseTime; // time between responses
Serial.println(interResponseTime); // sent result to serial port
previousResponseTime = millis(); // record time of this response

29

The sketches in this Reference use millis() to correct for contact bounce in noisy switches. For an example, see
the sketch entitled “Count Button Presses Debounced.”

micros()

This function returns the time in microseconds since the Arduino began running the current sketch – that is,
since the Arduino was powered up or reset. There are 1,000 microseconds in a millisecond or, in other words,
1,000,000 microseconds in a second. Because micros() can return such a large number, use a long variable,
rather than an int, to store the result. For example:

long currentMicroseconds = micros();

On our Arduino Uno, the timing resolution is 4 microseconds. That’s not bad: Timing is accurate to 0.000004
second!

The micros() function has an important limitation: This number it returns will overflow (go back to zero), after
approximately 70 minutes. Your sketch must start and end within that period, otherwise the results from
micros() will be unreliable.

30

Digital Input

The Arduino’s pins can be configured as inputs or outputs. Input pins receive signals from the environment.
Digital signals are discrete – the signal is “on” or “off” – as compared to analog signals that can vary continuously
across a range of values. A digital input pin, then, is configured to detect “on” or “off” states of the device that
is connected to it. The most common example in a prototype circuit is a button. In the psychology laboratory,
the connected devices would be designed to detect behavior, including rat levers, pigeon keys, or photocell
circuits that detect a mouse’s nose poke.

In digital circuits, “on” translates to HIGH which means, in the case of our Arduino Uno, there is 5V on the pin.
“Off” translates to LOW which means there is 0V (i.e., GND) on the pin.

The Arduino’s input pins are “high impedence:” Left alone, they are susceptible to electrical noise in the
environment and will flip randomly between HIGH and LOW. This obviously is unacceptable if the pins are to be
used to detect the state of a button, lever, key, or photocell. One solution is to tie the input pin to 5V so that
when at rest, the pin is HIGH. We then wire up the input switch (button, key, etc.) so that it turning the switch
on (e.g., pressing the button) puts GND on the pin, pulling it LOW. Our sketch looks for the pin to go LOW and
when it does, we count that as a response.

Here is a diagram of the circuit:

With the switch open, as shown here, the pin is connected to 5V through a 10K-ohm resistor. This
holds the pin in its HIGH state (it will be “pulled up”). One side of the switch is connected to GND (i.e.,
0V) and when it is closed, the pin will be connected to both GND and 5V. Because the path to GND has
no resistor in it – it is literally the “path of least resistance” – that connection takes precedence, and
the pin will be brought to a LOW state.

If it seems odd to you to set up a system in which a button press is detected when the input goes LOW
rather than HIGH, you can flip the 5V and GND and create a “pulldown” circuit:

In this circuit, the pin is held LOW (“pulled down”) until the switch is closed, at which point 5V flows to
the pin, bringing it HIGH. With this circuit, a button press is detected when the input goes HIGH.

Either strategy will work, but the pullup strategy is the easier because the circuitry is built-in. If you
choose the pulldown strategy, you must provide the resistor and build the circuit. If you choose the
pullup strategy, you simply activate the built-in circuit within your Arduino sketch. This Reference
assumes the pullup strategy. EXCEPTION: For technical reasons, Pin 13 has trouble with the
INPUT_PULLUP mode, so don’t use it with Pin 13.

= GND

Switch

“Pullup” Input Circuit

Switch

“Pulldown” Input Circuit

31

pinMode(pin, INPUT_PULLUP);

This function, which should be part of the setup() function of your sketch, configures the designated pin as an
input and activates the internal pullup circuit. The “pin” parameter can be the actual pin number or a variable
or constant that holds the pin number; the advantage of the latter is that the variable can convey the function of
the pin. Consider these two blocks of code:

pinMode(8, INPUT_PULLUP);
pinMode(9, INPUT_PULLUP);

const int leftLever = 8;
const int rightLever = 9;
pinMode(leftLever, INPUT_PULLUP);
pinMode(rightLever, INPUT_PULLUP);

The first block of code is simple. The second requires an extra step: creating two integer constants to hold the
pin numbers. Except in the simplest sketches, however, the extra effort is worthwhile. Using meaningful names
instead of numbers to refer to the pins will make your code easier to write, read, and debug.

digitalRead(pin)

This function returns the current state of the pin, LOW or HIGH. The result can be stored in a variable or acted
upon immediately. A couple examples:

newButtonState = digitalRead(leftLever); // read pin, save result

if (digitalRead(startButton) == LOW){ // button is pressed, so do something…

Counting Discrete Input Events

Your sketch can execute its loop() function rapidly. A single input event (button press, key peck, etc.) may be
detected hundreds of times. For example, a rat may press a lever and hold it down for a half-second before
releasing it and pressing it again. Your sketch may “see” that first press several hundred times, but you only
want to count it as a single response. To do this, you need to keep track of changes in the state of the input.

To track changes in a button, for example, we need to create two variables. One is used to save the input state
the last time a change was detected; the other is used to hold the current input state. Each time we read the
input pin, we compare its new (current) state with the old state. If the new state does not match the old state,
that means the state has changed, in which case we need to (a) record the fact that a change was detected, by
updating the “old state” variable, and (b) evaluate the new state. If the new state is LOW (assuming a pullup
circuit is being used), then the button has been pressed and we count it. If the new state is HIGH, it means that
the button has been released and we can move along without incrementing our counter.

The sketch on the next page will do the trick. Each new button press increments a counter. The button must be
released and pressed anew for another increment. This is bare-bones code to show the essential logic involved
in detecting and counting discrete input events. The sketch doesn’t do anything with the information except to
send the value of the counter to the serial port so you can view it on the serial monitor.

32

// COUNTING DIGITAL INPUTS
// define some integers
const int respButton = 8; // button will be connected to Digital Pin 8
int respCount; // for counting responses
int newButtonState; // for keeping track of changes in button’s state
int oldButtonState; // for keeping track of changes in button’s state

void setup() {
 pinMode(respButton, INPUT_PULLUP); // input with internal pullup
 Serial.begin(9600); // Open a serial port
}

void loop() {
 // read the state of the response button
 newButtonState = digitalRead(respButton);
 // has the state changed since our last read?
 if (newButtonState != oldButtonState) {
 // yes, the button state has changed so make a note of it
 oldButtonState = newButtonState;
 // is the new state of the button LOW, i.e., is button pressed?
 if (newButtonState == LOW){
 respCount = respCount + 1; // yes, button is pressed, count it
 Serial.println(respCount); // send the count to the serial port
 }
 }
}

Debouncing

The electrical contacts inside a switch can vibrate briefly when the switch changes state – for example, when a
pushbutton is pressed. The vibrations, called “contact bounce,” generate spurious open/close transitions that
your sketch may read as multiple presses. This problem may be corrected in hardware with specialized circuitry.
Or it may be corrected in software with a simple strategy: Whenever a change in the input’s state is detected,
further changes are ignored for a little while – a very little while, perhaps 5 milliseconds or less (depending on
how “noisy” your switch may be). The idea is that the changes in the input that take place within milliseconds of
one another are caused by contact bounce and should be ignored.

To ignore contact bounce – to add “debouncing” code to our sketch – we need a function that tells time: We
will use the millis() function that returns the number of milliseconds that has elapsed since the Arduino began
running the current sketch.

The next sketch adds debouncing code to the sketch we just reviewed. The logic is s straightforward. When we
detect a change in the state of the button (LOW or pressed, HIGH or released), we note the time. Then, when
we detect further changes in the button state, we ignore them if they have occurred too soon after the last
recorded state change. "Too soon" is operationalized in the debounceDelay constant, which is set here to 3
milliseconds. If you happen to be using very noisy switches, you may need to set a longer delay.

To facilitate comparison of the two sketches, the code added for the purpose of debouncing is highlighted in
yellow.

33

// COUNTING DEBOUNCED DIGITAL INPUTS
// define some integers
const int debounceDelay = 3; // 3-millisecond delay for debouncing
long lastChangeMoment; // to record the moment of last input change
long elapsedChangeTime; // to record the passage of time since last change
const int respButton = 8; // button will be connected to Digital Pin 8
int respCount; // for counting responses
int newButtonState; // for keeping track of changes in button’s state
int oldButtonState; // for keeping track of changes in button’s state

void setup() {
 pinMode(respButton, INPUT_PULLUP); // input with internal pullup
 Serial.begin(9600); // Open a serial port
}

void loop() {
 // read the state of the response button
 newButtonState = digitalRead(respButton);
 // calculate how much time has passed since last button change
 elapsedChangeTime = millis() - lastChangeMoment;
 // has the state changed since our last read AND has the debounce delay passed?
 if ((newButtonState != oldButtonState) && (elapsedChangeTime >= debounceDelay)) {
 // yes, the button state has changed and enough time has passed,
 // so we will pay attention to the change
 oldButtonState = newButtonState; // record the change in state
 lastChangeMoment = millis(); // record the time of this change
 // is the new state of the button LOW, i.e., is button pressed?
 if (newButtonState == LOW){
 respCount = respCount + 1; // yes, button is pressed, count it
 Serial.println(respCount); // send the count to the serial port
 }
 }
}

34

Digital Output

A digital output pin is configured to turn the device connected to it on or off. Most devices are designed so that
setting the output pin HIGH turns it on and setting the pin LOW turns it off. I have encountered devices that
work the opposite way, but in this Reference the assumption is that HIGH = on and LOW = off.

pinMode(pin, OUTPUT);

This is all it takes to configure a pin for output. The “pin” parameter can be the number of the pin or a constant
or variable with a meaningful name that holds the number of the pin (e.g., “pelletDispenser”).

digitalWrite(pin, HIGH); and digitalWrite(pin, LOW);

The digitalWrite function is used to change the state of the output pin; setting it HIGH allows 5V to flow and
setting it LOW grounds it.

The “Blink” sketch is the classic demonstration of digital output. The sketch is designed to control an LED. The
positive lead of the LED is connected to an output pin (Pin 13 in this example) and the negative side is connected
to GND. Note also the 220-ohm resistor in series with the LED.

void setup() {
 pinMode(13, OUTPUT); // initialize digital pin 13 as an output.
}

void loop() {
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

35

Analog Input

Our Arduino has six input pins numbered A0 through A5 that are capable of analog input. Whereas a digital
input can detect only LOW and HIGH states (0V and 50V), an analog pin can detect a wide range of states
anywhere between 0V and 5V. When used for analog input, these pins connect to an analog-to-digital (A/D)
converter. The A/D converter translates the voltage received by the analog pin to an integer between 0 and
1,023. If the voltage on the pin is 0 (i.e., GND), the A/D converter returns 0. If the voltage is 5, the A/D
converter returns 1,023. Intermediate voltages
lead to intermediate digital conversions. The
point is this: Although an analog signal can have
infinite variation, our Arduino will digitize the
variation into a finite set of 1,024 values (i.e., 0
through 1,023).

You may be interested to know that Pins A0 through A5 do not have to be used for analog input. They can be
configured for digital input or output using the code described in the previous two sections. If you use one of
these pins for digital input or digital output, and then you want to switch the pin to analog input, you should (a)
explicitly set the pin mode to simple input (i.e., with no pullup resistor circuit), and then pause for a few
milliseconds before attempting to read the analog pin. For example:

pinMode(pin, INPUT); // simple input mode
delay(10); // pause briefly to allow electrical noise to quiet down

This is the function for analog input:

analogRead(pin)

The “pin” parameter can be the number of the pin a constant or variable with a meaningful name that holds the
number of the pin (e.g., “temperatureSensor”). You may be wondering what kind of variable or constant should
be used to store A0, A1, etc. You can use an int because A0 (and the other analog pin designations) is a built-in
constant that holds the actual pin number. Here are the numbers:

A0=14, A1=15, A2=16, A3=17, A4=18, A5=19.

In other words, you can set the variable or constant to A0 or to 14. These are equivalent statements:

const int temperatureSensor = A0;
const int temperatureSensor = 14;

As noted above, the analogRead() function will return a value between 0 and 1,023. You probably will want to
convert the value to one that is more meaningful – for example, degrees Farenheit if your analog sensor is
responding to temperature. The map() function may come in handy:

map(val, fromMin, fromMax, toMin, toMax)where

val = the reading from the analog pin,
fromMin = the lowest possible reading
fromMax = the highest possible reading
toMin = the lowest possible value in the converted unit of measurement
toMax = the highest possible value in the converted unit of measurement

36

The map() function uses integer math. This would appear to pose a problem if, for example, you wanted to
convert the reading to voltage. To illustrate, suppose you wrote this code to get the voltage at Pin A0:

int pinReading = analogRead(A0);
int volts = map(pinReading, 0, 1023, 0, 5);

The value read from the pin can be from 1 to 1,023. We want to convert that to something between 0V and 5V.
This seems like an easy way to do it. And yes, it will work, but not very well because in this code “volts” can take
on just six possible values: 0, 1, 2, 3, 4, 5. We won’t be able to measure fractional changes in voltage, even
though our instrument is capable of it. Our A/D converter is capable of discriminating variations in voltage of
5.0/1,204 = 0.005V.

To get around the integer limitations of the map() function, we can expand the conversion range and then use
floating-point math to break the results into decimal fractions. For example:

int newPot = analogRead(A0); // read pin connected to 10K potentiometer
// then convert the reading to voltage in the next 2 lines
float potVolts = map(newPot, 0, 1023, 0, 500); // convert to voltage x 100
potVolts = potVolts / 100.0; // convert to voltage expressed to nearest .01 V
Serial.println(potVolts); // show the voltage

By the way, it turns out that the potentiometer is a pretty good model for analog input in general. No matter
what kind of sensor you connect to an analog pin, it will input variations in voltage. It doesn’t matter if the
sensor is a potentiometer, a thermistor, a photoresistor, etc. Of course, if you’ve attached a thermistor, you
probably don’t really care about the input voltage; instead, you will want to convert the input signal to
temperature in degrees Fahrenheit or degrees Celsius. Or if you’ve attached a photoresistor, you may want to
convert the signal to lux, a measure of illumination. The coding to accomplish these things is not hard, but you
will have to do some research to figure out the conversion formula. Instructions may come with the sensor. In
many cases, sensors come with specialized Arduino libraries that do the conversions for you – and then all you
have to do is figure out which library functions to use.

Analog Output

As you may have surmised, an analog output pin is capable of sending out a wide range of voltages between 0V
and 5V. On this topic, I have good news and bad news. First, the bad: Our Arduino Uno does not have any
analog output pins! Some microcontroller boards in the Arduino extended family do have them, but the Uno is
not one of them. The good news is that our Arduino does provide a partial work-around: It has six digital pins
that can mimic analog output through a technique called Pulse Width Modulation (PWM). Here is the function:

analogWrite(pin,dutyCycle);

Here “pin” is the PWM-capable digital pin, configured as a output. On our Arduino, “pin” must be 3, 5, 6, 9, 10,
11 (or, of course, a variable or constant storing one of those numbers). The other parameter, “dutyCycle,” is a
value between 0 and 255. It expresses the part of the pin’s normal cycle during which the pin will be HIGH. For
example, a dutyCycle value of 63 is 25% of the way between 0 and 255. This value will cause the pin to be HIGH
for 25% for the cycle (the “duty” part) and LOW for the other 75%. A value of 127 would have the pin be HIGH
for 50% of each cycle and LOW for the other 50%. (As you might guess, at the limits, a dutyCycle of 0 will keep
the pin LOW throughout the cycle, and a dutyCycle of 255 will keep the pin HIGH.)

If you attach motor to, say, Pin 3, adjusting the value of the dutyCycle will change the speed of the motor in
relatively fine gradations – 256 gradations (0-255) to be exact. If you attach an LED, adjusting the dutyCyle will
change the apparent brightness off the LED. The higher the value of the dutyCycle, the longer the motor or LED
are powered.

37

38

Branching

Code in an Arduino sketch is executed in linear fashion, statement by statement, unless otherwise directed.
Departures from a purely linear flow can be arranged in various ways. Here are three of them.

if

The simple if structure tests a condition and, if the result is true, some code is executed. It works like this:

if (expression){
 … code that will be executed if the expression is true…
 }

Here the expression in parentheses can be anything that is Boolean true or Boolean false. This is commonly
some kind of comparison [e.g., (responseCount >= fixedRatio)]. If the comparison is true – if the
value of responseCount is greater than or equal to the value of fixedRatio, then the code inside the curly braces
will be executed and the program will continue with the statement after the second curly brace. If the
comparison is false, the program will skip the code inside the curly braces.

if/else

This is a straightforward extension of the simple if structure. It works like this:

if (expression) {
 … code that will be executed if the expression is true…
 }
 else {
 … code that will be executed if the expression is false…
 }

Take careful note of the two pairs of braces. The first pair encompasses the code that will be executed if the
expression is true. The second pair of braces encompass the code that will be executed if the expression is false.

switch/case

This structure allows you to specify the code to be executed not just in one (if) or two (if/else) cases, but in any
number of cases. It works like this:

 switch (variable) {
 case 1:
 … code that will be executed if variable == 1…
 break;
 case 2:
 … code that will be executed if variable == 2…
 break;
 case 3:
 … code that will be executed if variable == 3…
 break;
 default:
 … code that will be executed if no match is found…
 break;
 }

39

An int or string variable is listed in the first line. This is followed a series of cases, each indicating a possible
value (A, B, C) that could match the value of the variable in the first line. The values must be literal integers or
literal strings. When the first match is encountered, the code that follows it is executed and then the program
flow skips to the end and picks up execution with the first line after the curly brace. The break statement at the
end of each case is required to mark the end of the code to be executed when a match is found; when the break
statement is reached, the program flow breaks out of the switch/case structure.

In the example above, I’ve listed three possible cases, but there is no practical limit to the number of cases. In
Part 6, there is a sketch with a switch/case that has over 20 cases; see “Remote Signal Decoding Elegoo.”

You also have the option of including a catch-all block of code to be executed if none of the cases matches the
variable. This default block of code is listed last.

Here’s a little sketch to play with:

The int x is set to 9. As a result, the default code sends then phrase “No match!” to the serial monitor. What
will happen if you set x to 1? Or 2? Or 3? Or 4? Or 44?

int x = 9;

void setup() {
 Serial.begin(9600);
}

void loop() {
 switch (x) {
 case 1:
 Serial.println(x);
 break;
 case 2:
 Serial.println(x);
 break;
 case 4:
 Serial.println(x);
 break;
 default:
 Serial.println("No match!");
 break;
 }
 delay (500);
}

40

Looping

Of the various looping statements, I will consider just one.

for

The classic for loop, as implemented in C, has this general format:

 for (int x = 0; x < 100; x++) {
 Serial.println(x);
 }

The loop’s header has three parts:

• Initialization: Declare an integer type variable (if it hasn’t been declared already) and set a starting value.

• Test: A comparison involving the variable. The loop will execute until this comparison is false.

• Increment or Decrement: An expression that increases or decreases the value of the variable after each
loop.

In the example shown above, the int x starts at 0. The code within the loop – that is, the code within the curly
braces that mark the beginning and end of the loop – will be executed once. Then x will be incremented or
decremented and the resulting value will be tested. In this example, if it is true that x < 100, the code will be
executed again, and x will be incremented and tested again. Eventually, the test comparison will be false (i.e., x
will not be less than 100), at which point the loop is over. In the example, the values 0 through 99 would be sent
to the serial monitor.

You might be wondering about this expression: x++. This is coding shorthand for x = x + 1. If you prefer, you can
say x = x + 1. You can increment in other steps sizes: If we changed the increment to x = x + 2, the loop would
print 0, 2, 4, 6, … 98.

Doing Math

The code to perform arithmetic is straightforward; you pretty much use the arithmetic operators described in
Part 4 as you did in grade school. The only difference is that the result is on the left of the equation because the
assignment operator sends values to the left. For example, to add variables a and b and store the result in c:

c = a + b;

If you have to code an expression involving, say, addition and division, you need to worry about the order of
operations. I can’t remember the rules about this, so I just use parenthesis to make the desired order explicit.

c = a + b / c; is ambiguous to me, so I would say c = (a + b) / c;

41

If you want to code arithmetic with floating point variables, you need to designate any literal values as floating
point numbers even if they happen to be whole numbers. Consider this sketch:

We divide 1 by 3 and store the result in x. We expect 0.33, but we get 0.00. The reason is that the compiler is
treating 1 and 3 and integers, and 0 is the correct result for integer division in this case. We have to tell the
compiler to treat the literal values of 1 and 3 and floating point numbers. We do that by adding the decimal
points. If we designate 1 as ‘1.” and 3 as ‘3.’ then our sketch will do floating point division and yield the
expected result, which we have stored in the float variable y in this example.

In addition to the arithmetic operators, the Arduino language provides a variety of mathematical functions.
Among the most commonly used are these:

abs(x)

Returns the absolute value of x.

constrain(x,a,b)

Constrains x to the range from a to b inclusive. For example, if x = 106 then contrain(x, 0, 100) would return 100.

max(x,y)

Returns the higher of two numbers. If x = 5 and y = 1 then max(x, y) returns 5.

min(x,y)

Returns the lower of two numbers. If x = 5 and y = 1 then min(x, y) returns 1.

pow(b,e)

Raises b to the eth power. If b = 10 and e = 3 then pow(b, e) will return 1000. Note that e can be a fraction: If b =
10 and e = .5 then pow(b, e) = 3.16.

sqrt(x)

Returns the square root of x.

void setup() {
 Serial.begin(9600);
}

void loop() {
 float x = 1/3;
 float y = 1./3.;
 Serial.print("x = ");
 Serial.print(x);
 Serial.print(", y = ");
 Serial.println(y);
 delay(1000);
}

42

Sometimes you may need to convert a variable from one type to another. Here are some common conversion
functions. In each case, the parameter x can be of any valid numerical data type.

int(x) long(x) float(x)

convers x to an int, a long, or a float, respectively. (Thank you, Captain Obvious!)

If your sketch needs to receive numerical information from a user or a PC program through the serial port, the
information actually will be received as a string of characters. The user might intend ’12.5’ to mean ‘twelve-and-
a-half’ but your sketch won’t see it that way unless you convert from a string to a numerical value. If the string
of characters is received into a string variable named ‘string’ then you can say

string.toFloat()

to convert it to a float or

string.toInt()

to conver it to an int. Here is a sample sketch and the results. Note what happens when the string “1.33” is
converted to float variable x versus what happens when it is converted to int variable y.

String one = "1.33";
String two = "17";

void setup() {
 Serial.begin(9600);
}

void loop() {
 float x = one.toFloat();
 int y = one.toFloat();
 int z = two.toInt();
 Serial.print("x=");
 Serial.print(x);
 Serial.print(", y=");
 Serial.print(y);
 Serial.print(", z=");
 Serial.println(z);
 delay(1000);
}

43

Making Sounds

A pure tone is a sine wave. Creating a sine wave
requires a true analog output pin and, as we
have noted, our Arduino Uno lacks one. It can,
however, generate high frequency square
waves by turning a digital pin HIGH and LOW
rapidly. Attach the pin to a speaker (and
perhaps a suitable amplifier) and you can get a
tone. It won’t sound exactly like a pure (sine-
wave) tone, but it will be close enough for many
purposes.

We have two functions for tones, one to start a
tone of a specific frequency and the other to
stop the tone.

tone(pin,frequency,duration);

This function generates a square wave on the designated pin (50% on, 50% off), at the designated frequency (in
Hz), for the specified duration in milliseconds. The last parameter is optional; if omitted, the tone will play
continuously until stopped by the noTone() function described below. The minimum frequency is 31 Hz and the
maximum is 65,535 Hz. On the Arduino Uno, this function will interfere with Pulse Width Modulation [i.e., with
the analogWrite() function] on Pins 3 and 11.

noTone(pin);

This just turns off the square wave generated by a previous tone() function on the designated pin.

44

45

Part 6:

Sample Sketches & Circuits

Blink

/
*
 Blink

 This sketch alternates, every second, between setting an output pin (Digital Pin
 13) HIGH (on) and LOW (off). It is called “Blink” because it is assumed that an
 LED is attached to Pin 13. When the pin is HIGH, the LED will be lit; when the
 pin is LOW, the LED will be dark.

*/

void setup() {
 pinMode(13, OUTPUT); // initialize digital pin 13 as an output.
}

void loop() {
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

46

Reading Serial Strings

This sketch does not require any hardware
beyond an Arduino connected to a PC. The sketch
demonstrates the use of the Arduino IDE’s serial
monitor and a way for the Arduino sketch to
communicate with the PC via the serial monitor.
You can activate the serial monitor via the “Tools”
tab in the IDE’s menu bar.

/*
Reading_Serial_Strings

 This sketch demonstrates one way to:
 (a) receive a string that a user sends from the serial port;
 (b) if the string begins with a numeral, convert it to an integer;
 (c) send the string to the serial port;
 (d) send the integer to the serial port.

 Use the Serial Monitor to send strings to the sketch,
 as well as to see the results that the sketch sends back.

 Note use of these functions:

 Serial.begin - to establish serial communications
 Serial.setTimeout - to the set the amount of time the sketch will spend reading
 the serial port before moving on
 Serial.available - returns the number of characters in the serial input buffer
 toInt - converts a string that begins with a numeral to an integer integer
 Serial.readString - reads a string from the serial port until the
 timeout limit elapses (as set by Serial.setTimeout)
 Serial.print - sends characters to the serial port
 Serial.println - sends chacters to the serial port, followed by a line feed (so
 the next thing sent to the port is shown on a new line)

 Try sending these strings and see what happens:

 B. F. Skinner
 Will White
 007 James Bond
 9876
 9876Zebra
 Zebra9876

 M. Perone
 WVU Psychology Department
 February 1, 2017
*/

Listing continues…

47

Reading Serial Strings cont’d

void setup() {
 // initialize serial communication at 9600 bits per second:
 Serial.begin(9600);
 // set the time limit for reading a string to 10 ms
 // if you anticipate only short strings, a shorter limit
 // can be used; if you anticipate longer strings, the time
 // will need to be longer. play with the limit and the size
 // of the strings you send and see what happens.
 Serial.setTimeout(10);
}

void loop() {
 // are there any characters in the serial input buffer?
 if (Serial.available() > 0) {
 // yes, there are characters in the buffer, so...
 // ...read them into string variable
 String inputString = Serial.readString();
 // ...and send the contents of the string variable back out
 Serial.println(inputString);
 // if possible, convert the string to a number and store it
 // if the string does not beging with a numeral, a zero is returned
 long number = inputString.toInt();
 // send the result to the serial port
 Serial.print("Converted to an integer = ");
 Serial.println(number);
 }
}

Sample output

48

Reading Serial Strings as Parameters

/*
 Reading_Serial_Strings_as_Parameters

 This sketch demonstrates one way to:
 (a) receive a string that a user sends from the serial port;
 (b) if the string begins with a numeral, convert it to an integer;
 (c) use the integer to establish the frequency of a tone.

 This sketch extends "Reading_Serial_Strings." You can use the Serial Monitor
 to send strings to the sketch, and see the results that the sketch returns..

 Note use of these functions:
 Serial.begin - to establish serial communications
 Serial.setTimeout - to the set the amount of time the sketch will spend reading
 the serial port before moving on
 Serial.available - returns the number of characters in the serial input buffer
 toInt - converts a string that begins with a numeral to an integer
 Serial.readString - reads a string from the serial port until the timeout limit
 elapses (as set by Serial.setTimeout)
 Serial.print - sends characters to the serial port
 Serial.println - sends chacters to the serial port, followed by a line feed (so
 the next thing sent to the port is shown on a new line)
 tone - sends a tone of a certain frequency through a designated output pin
 noTone - turns off the tone at a designated pin

 Circuit Notes:
 Piezo speaker (passive buzzer):
 Connect negative pin to GND
 Connect positive pin to Digital Pin 2

 M. Perone
 WVU Psychology Department
 February 1, 2017
*/

Listing continue…

49

Reading Serial Strings as Parameters cont’d

void setup() {
 // initialize serial communication at 9600 bits per second:
 Serial.begin(9600);
 // set the time limit for reading a string to 3 ms
 // if you anticipate only short strings, a short limit
 // can be used; if you anticipate longer strings, the time
 // will need to be longer. play with the limit and the size
 // of the strings you send and see what happens.
 Serial.setTimeout(3);
}

void loop() {
 // are there any characters in the serial input buffer?
 if (Serial.available() > 0) {
 // yes, there are characters in the buffer, so...
 // ...read them into string variable
 String inputString = Serial.readString();
 // ...and send the contents of the string variable back out
 Serial.println(inputString);
 // if possible, convert the string to a number and store it
 // if the string does not beging with a numeral, a zero is returned
 long number = inputString.toInt();
 // is the number between 1 and 10?
 if (number > 0 && number < 11) {
 // yes, convert to a frequency
 int frequency = number * 300;
 // play the tone @ specified frequency
 tone(2, frequency);
 // send some info to serial port
 Serial.print("User input = ");
 Serial.println(number);
 Serial.print("Tone frequency (Hz) = ");
 Serial.println(frequency);
 }
 else
 {
 // turn tone off
 noTone(2);
 // and send info
 Serial.print("User input = ");
 Serial.println(number);
 Serial.println("Tone OFF");
 }
 }
}

Sample output.

50

Count Button Presses

/*

Count_Button_Presses

This sketch illustrates how to count button presses or any the digital input).
We want to count each press just once: If the user holds the button down,
the sketch will see this thousands of times, but we only want to increment our
counter once. The user must release the button and press it anew for the
response counter to be incremented.

Circuit Notes:

Button:
Connect one pin to GND
Connect the other pin to Digital Pin 8

Comments:

This sketch makes no effort to correct for bounce in the button's electical
contacts, and therefore extra presses may be counted.

M. Perone
WVU Psychology Dept
February 1, 2017

*/

51

Count Button Presses cont’d

// define some integer variables
int respCount;
int newButtonState;
int oldButtonState;

void setup() {
 // Open a serial port
 Serial.begin(9600);
 // set Digital Pin 8 to input with internal pullup
 pinMode(8, INPUT_PULLUP);
}

void loop() {
 // read the state of the pin
 newButtonState = digitalRead(8);
 // has the state changed since our last read?
 if (newButtonState != oldButtonState) {
 // yes, the button state has changed so
 // make a note of it
 oldButtonState = newButtonState;
 // is the new state of the button
 // LOW, i.e., button is pressed?
 if (newButtonState == LOW){
 // yes, button is pressed, count it
 respCount = respCount + 1;
 // and send current count to serial port
 Serial.println(respCount);
 }
 }
}

52

Count Button Presses Debounced
This sketch uses the same circuit as “Count Button Presses”

/*

Count_Button_Presses_Debounced

This sketch illustrates how to count button presses or any the digital input).
We want to count each press just once: If the user holds the button down,
the sketch will see this thousands of times, but we only want to increment our
counter once. The user must release the button and press it anew for the
response counter to be incremented.

This is an extension of "Count_Button_Presses." In this sketch,a correction is made
for possible bounce in the button's electical contacts. The logic is s
straightforward. When we detect a change in the state of the button (LOW or
pressed, HIGH or released), we note the time. Then, when we detect further changes
in the button state, we ignore them if they have occurred too soon after the last
recorded state change. "Too soon" is operationalized in the debounceDelay
constant.

Circuit Notes:

Button:
Connect one pin to GND
Connect the other pin to Digital Pin 8

M. Perone
WVU Psychology Dept
February 1, 2017

*/

Listing continues…

53

Count Button Presses Debounced cont’d

// define some integer variables
int respCount;
int newButtonState;
int oldButtonState;
long lastButtonChangeTime;
const int debounceDelay = 3; // 3-ms debouce delay

void setup() {
 // Open a serial port
 Serial.begin(9600);
 // set Digital Pin 8 to input with internal pullup
 pinMode(8, INPUT_PULLUP);
}

void loop() {
 // read the state of the pin
 newButtonState = digitalRead(8);
 // is the state changed since our last read AND at least the debounce delay has
passed?
 if ((newButtonState != oldButtonState) && ((millis() - lastButtonChangeTime) >=
debounceDelay)){
 // Yes, the button state has changed and enough time has passed to pay
attention to the change
 // make a note of the change in state
 oldButtonState = newButtonState;
 // and make a note of the time of this change
 lastButtonChangeTime = millis();
 // is the new state of the button
 // LOW, i.e., button is pressed?
 if (newButtonState == LOW){
 // yes, button is pressed, count it
 respCount = respCount + 1;
 // and send current count to serial port
 Serial.println(respCount);
 }
 }
}

54

Adjustable Tone

/*

 Adjustable_Tone

 This is a simple demonstration of analog input. A potentiometer provides
 input voltage to analog pin A0. The voltage is used to determine the
 frequency of a tone that is output to pin 2.

 Note use of these functions: analogRead, map, abs, tone.

 Circuit Notes:

 10K potentiometer:
 Connect 1 outer pin to GND and 1 outer pint to +5V;
 Connect middle pin to analog pin A0

 Piezo speaker (passive buzzer):
 Connect negative pin to GNS
 Connect positive pin to digital pin 2

 Comments:

 A certain amount of noise is inherent in analog input. A common
 way to compensate for this is to take multiple readings from the
 input pin and average them - a procedure called "smoothing." In
 this sketch, I have taken a simpler approach. After reading the
 voltage on the analog pin and converting it to a number between
 500 and 1500 (which will be used as my lowest and highest tone
 frequencies),I check to see if the number has changed by at least
 10 since the last reading. If it has changed that much, I adjust
 the frequency of the tone; otherwise, I leave the tone as-is. This
 eliminates (most) tiny fluctuations in tone that would arise from
 variablity in the voltage at the analog input.

 M. Perone
 WVU Psychology Dept
 January 26, 2017

*/

Listing continues…

55

Adjustable Tone cont’d

int voltage; // voltage read from potentiometer connected to pin A0
int newToneFrequency; // frequency (Hz) of tone to be output
int oldToneFrequency; // last frequency (Hz) that was output
int change; // to save change from old frequency to new frequency

void setup() {
 pinMode(A0, INPUT); // set analog pin A0 to input
}

void loop() {
 // read the voltage from analog input pin
 voltage = analogRead(A0);
 // convert voltage to a number between 500 and 1500
 // this will be new tone frequency
 newToneFrequency = map(voltage, 0, 1023, 500, 1500);
 // calculate difference between old and new frequencies
 change = newToneFrequency - oldToneFrequency;
 // convert change to absolute value (get rid of negative numbers)
 change = abs(change);
 // if new tone is at least 10 Hz different from old tone...
 if (change > 9) {
 // ... go ahead and adjust the frequency that is output to the speaker...
 tone(2, newToneFrequency);
 // ... and save the value in oldToneFrequency
 oldToneFrequency = newToneFrequency;
 }
}

56

LCD Hello World

/*
 LCD Hello World

 Demonstrates the use a 16x2 LCD display. The LiquidCrystal library works with all
 LCD displays that are compatible with the Hitachi HD44780 driver. There are many
 of them out there, and you can usually tell them by the 16-pin interface.
 This sketch prints "Hello World!" to the LCD in English, Spanish, Klingon, and
 Italian. It also shows the time that has elapsed since the Arduino was reset.

 Circuit Notes:

 The circuit is not complicated, but there are a lot of wires. The LCD has 16
 pins; we will make connections with 12 of them.

 1. VSS: GND on breadboard
 2. VDD: +5V on breadboard
 3. VO: Wiper (output) of 10K potentiometer. Connect one input pin of the pot to
 GND (on breadboard) and the other to +5V (on breadboard). Turning the pot
 will adjust the contrast of the display.
 4. RS: Digital Output 12. This is the "Register Select" pin of the LCD.
 5. RW: GND (on breadboard). This pin sets the mode to Read or Write.
 6. E: Digital Output 11. This is the "Enable" pin of the LCD.
 7. D0: not used
 8. D1: not used
 9. D2: not used
 10. D3: not used
 11. D4: Digital Output 5
 12. D5: Digital Output 4
 13. D6: Digital Output 3
 14: D7: Digital Output 2
 15: A: +5V (on breadboard) through a 220-ohm resistor
 16: K: GND on breadboard). The A and K pins power the backlight.

 Comments:

 For the various versions of the "Hello World" message, I send 16 characters to
 the LCD. The last several are just spaces. This is to ensure that a new
 version completely overwrites the old version of the message.

 Note the use of "switch...case". From the Arduino Online Reference: Like "if"
 statements,"switch...case" controls the flow of programs by allowing programmers
 to specify different code that should be executed in various conditions. In
 particular, a switch statement compares the value of a variable to the values
 specified in "case" statements. When a case statement is found whose value
 matches that of the variable, the code in that case statement is run. The "break"
 keyword exits the switch statement, and is typically used at the end of each
 case. Without a break statement, the switch statement will continue executing the
 following expressions "falling-through") until a break, or the end of the switch
 statement is reached.

 Library originally added 18 Apr 2008 by David A. Mellis
 Library modified 5 Jul 2009 by Limor Fried (http://www.ladyada.net)
 Example added 9 Jul 2009 by Tom Igoe; Modified 22 Nov 2010 by Tom Igoe
 Modified 4 & 11 Feb 2017 by M. Perone, WVU Psychology Dept

 Previous code that formed the basis of this sketch is in the public domain:
 http://www.arduino.cc/en/Tutorial/LiquidCrystal
*/

http://www.ladyada.net/
http://www.arduino.cc/en/Tutorial/LiquidCrystal

57

LCD Hello World cont’d

58

LCD Hello World cont’d

// include the library code:
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup() {
 // set up the LCD's number of characters per row, and rows:
 lcd.begin(16, 2);
 // Print a message to the LCD.
 lcd.print("Hello World! ");
}

void loop() {
 // set the cursor to column 0, line 1
 // (note: line 1 is the second row, since counting begins with 0):
 lcd.setCursor(0, 1);
 // construct a string to show seconds since reset:
 String message = "Elapsed: ";
 message = message + (millis() / 1000) + " s";
 lcd.print(message);
 // If 5 s has elapsed, "Hello World!" is translated to
 // Spanish. At 10 s, the translation is to Klingon(!), etc.
 long elapsedTime = millis() / 1000; // elapsed time in s
 switch (elapsedTime) {
 case 5:
 // position the cursor to Position 0, Line 0
 lcd.setCursor(0, 0);
 // print 16 characters
 lcd.print("Hola Mundo! ");
 // that's the end of the code for this case
 break;
 case 10:
 lcd.setCursor(0, 0);
 lcd.print("Qo' Vlvan! ");
 break;
 case 15:
 lcd.setCursor(0, 0);
 lcd.print("Salve Mondo! ");
 break;
 }
}

59

60

LCD Recycling Hello World
This sketch uses the same circuit as “LCD Hello World”

/*
 LCD Hello World

 Demonstrates the use a 16x2 LCD display. The LiquidCrystal library works with all
 LCD displays that are compatible with the Hitachi HD44780 driver. There are many
 of them out there, and you can usually tell them by the 16-pin interface.
 This sketch prints "Hello World!" to the LCD in English, Spanish, Klingon, and
 Italian, and then recycles back to English. It also shows the time that has
 elapsed since the Arduino was reset.

 Circuit Notes:

 The circuit is not complicated, but there are a lot of wires. The LCD has 16
 pins; we will make connections with 12 of them.

 1. VSS: GND on breadboard
 2. VDD: +5V on breadboard
 3. VO: Wiper (output) of 10K potentiometer. Connect one input pin of the pot to
 GND (on breadboard) and the other to +5V (on breadboard). Turning the pot
 will adjust the contrast of the display.
 4. RS: Digital Output 12. This is the "Register Select" pin of the LCD.
 5. RW: GND (on breadboard). This pin sets the mode to Read or Write.
 6. E: Digital Output 11. This is the "Enable" pin of the LCD.
 7. D0: not used
 8. D1: not used
 9. D2: not used
 10. D3: not used
 11. D4: Digital Output 5
 12. D5: Digital Output 4
 13. D6: Digital Output 3
 14: D7: Digital Output 2
 15: A: +5V (on breadboard) through a 220-ohm resistor
 16: K: GND on breadboard). The A and K pins power the backlight.

 Comments:

 For the various versions of the "Hello World" message, I send 16 characters to
 the LCD. The last several are just spaces. This is to ensure that a new
 version completely overwrites the old version of the message.

 Note the use of "switch...case". From the Arduino Online Reference: Like "if"
 statements,"switch...case" controls the flow of programs by allowing programmers
 to specify different code that should be executed in various conditions. In
 particular, a switch statement compares the value of a variable to the values
 specified in "case" statements. When a case statement is found whose value
 matches that of the variable, the code in that case statement is run. The "break"
 keyword exits the switch statement, and is typically used at the end of each
 case. Without a break statement, the switch statement will continue executing the
 following expressions "falling-through") until a break, or the end of the switch
 statement is reached.

 Library originally added 18 Apr 2008 by David A. Mellis
 Library modified 5 Jul 2009 by Limor Fried (http://www.ladyada.net)
 Example added 9 Jul 2009 by Tom Igoe; Modified 22 Nov 2010 by Tom Igoe
 Modified 4 & 11 Feb 2017 by M. Perone, WVU Psychology Dept

 Previous code that formed the basis of this sketch is in the public domain:
 http://www.arduino.cc/en/Tutorial/LiquidCrystal

http://www.ladyada.net/
http://www.arduino.cc/en/Tutorial/LiquidCrystal

61

*/

LCD Recycling Hello World cont’d

// include the library code:
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

// establish a variable to keep track of the message cycle
long cycleStartTime;

void setup() {
 // set up the LCD's number of columns and rows:
 lcd.begin(16, 2);
 // Print a message to the LCD.
 lcd.print("Hello World! ");
}

void loop() {
 // set the cursor to column 0, line 1
 // (note: line 1 is the second row, since counting begins with 0):
 lcd.setCursor(0, 1);
 // construct a string to show seconds since reset:
 String message = "Elapsed: ";
 message = message + (millis() / 1000) + " s";
 lcd.print(message);
 // If 5 s has elapsed, "Hello World!" is translated to
 // Spanish. At 10 s, the translation is to Klingon(!), etc.
 // Get the current time and convert to seconds
 long elapsedTime = (millis() - cycleStartTime) / 1000;
 // At 5, 10, 15 s, print greeting to LCD
 switch (elapsedTime) {
 case 5:
 // position the cursor to Position 0, Line 0
 lcd.setCursor(0, 0);
 // print 16 characters
 lcd.print("Hola Mundo! ");
 // that's the end of the code for this case
 break;
 case 10:
 lcd.setCursor(0, 0);
 lcd.print("Qo' Vlvan! ");
 break;
 case 15:
 lcd.setCursor(0, 0);
 lcd.print("Salve Mondo! ");
 break;
 case 20:
 // start over
 // show English greeting
 lcd.setCursor(0, 0);
 lcd.print("Hello World!");
 // record the start time of this cycle
 cycleStartTime = millis();
 break;
 }
}

62

Thermistor

/*
 Thermistor

 This sketch performs an analog read on a thermistor connected
 to Arduino Analog Pin 1. It converts the raw reading to voltage.
 The raw reading can be from 0-1023 and the voltage from 0.0 to 5.0.
 The sketch sends the raw reading and the voltage to the serial
 port twice per second.

 A thermistor is a temperature-sensitive variable resistor. As the
 temperature of the thermistor is raised, the thermistor's resistance is
 lowered. This in turn leads to an increase in the voltage received from
 the thermistor. So there is a direct relation between the temperature
 and the voltage.

 A thermistor is wired in the same way as a potentiometer. One lead is connected
 To V. The other lead is connected to an analog input (A1 in the sketch) AND to
 Ground via a 10K-ohm resistor. The only difference is this: With a
 potentiometer, resistance is controlled by turning a knob, but with a thermistor,
 resistance is controlled by heat.

 Circuit notes:
 1. Thermistor Lead 1 to 5v (lead numbering is arbitrary)
 2. Thermistor = Lead 2 to Analog Input 1
 3. Thermistor Lead 2 (again!) to GND via 10K-ohm resistor

 Additiona factors are involved in converting the thermistor readings to
 temperature. A comprehensive tutorial (based on a nicer thermistor than the
 one in our kit) is here: https://learn.adafruit.com/thermistor/overview. We
 won't bother about this now because we have an easier way to read temperature
 using the DHT11, a device that directly returns temperature (and humidity).

 M. Perone, WVU Psyc Department, Mar 18, 2017, Mar 31, 2017
*/

int thermistorPin = 1; // refers to the Arduino pin so it has a nice name

void setup() {
 Serial.begin(9600); // set up serial communications
}

void loop() {
 int thermReading = analogRead(thermistorPin); // get input from thermistor
 float thermV = (thermReading * 5.0) / 1023.0; // convert to voltage
 Serial.print("Raw: "); // show the results...
 Serial.print(thermReading);
 Serial.print(", Volts: ");
 Serial.println(thermV);
 delay(500); // wait a half-sec before next reading
}

https://learn.adafruit.com/thermistor/overview

63

Joystick Simple

/*

 Joystick_Simple

 This sketch reads the switch, x-axis, and y-axis of a joystick and sends the
 readings to the serial port. Readings are made and sent every 50 ms.

 It appears that the joystick board includes debouncing circuitry, so no need to
 handle that in software.

 Circuit Notes (I recommend that all connections be made via the breadboard):

 1. Joystick GND to GND
 2. Joystick +5V to 5V
 3. Joystick VRx to Pin A0
 4. Joystick VRy to Pin A1
 5. Joystick SW to Pin D2

 M. Perone, WVU Psyc Dept, Feb 18, 2017

*/

// Arduino pin numbers
const int switchPin = 2; // digital pin connected to switch output
const int xPin = 0; // analog pin connected to X output
const int yPin = 1; // analog pin connected to Y output

void setup() {
 pinMode(switchPin, INPUT_PULLUP);
 Serial.begin(9600);
}

void loop() {
 Serial.print("Sw: ");
 Serial.print(digitalRead(switchPin));
 Serial.print(" X: ");
 Serial.print(analogRead(xPin));
 Serial.print(" Y: ");
 Serial.println(analogRead(yPin));
 delay(50);
}

64

Joystick Refined

/*

 Joystick_Refined

 This sketch reads the switch, x-axis, and y-axis of a joystick and sends the
 readings to the serial port - but only if the readings have changed. Any change
 in the switch is reported; changes in x and y are reported only if the change
 exceeds some minimum value as designed in the minimumChange constant below.

 It appears that the joystick board includes debouncing circuitry, so no need to
 handle that in software.

 Note the use of the "displayStickStatus" function. For more information about
 This structured coding technique, see
 https://www.arduino.cc/en/Reference/FunctionDeclaration

 Circuit Notes (I recommend that all connections be made via the breadboard):

 1. Joystick GND to GND
 2. Joystick +5V to 5V
 3. Joystick VRx to Pin A0
 4. Joystick VRy to Pin A1
 5. Joystick SW to Pin D2

 M. Perone, WVU Psyc Dept, Feb 18, 2017

*/

Listing continues…

https://www.arduino.cc/en/Reference/FunctionDeclaration

65

Joystick Refined cont’d

// Arduino pin numbers
const int switchPin = 2; // digital pin connected to switch output
const int xPin = 0; // analog pin connected to X output
const int yPin = 1; // analog pin connected to Y output

// To track changes in stick position and switch
int oldSwitch;
int newSwitch;
int oldX;
int newX;
int oldY;
int newY;
const int minimumChange = 3; // stick must change this much to trigger display
update

void setup() {
 pinMode(switchPin, INPUT_PULLUP);
 // next 3 lines: baseline reading of the stick
 oldSwitch = digitalRead(switchPin);
 oldX = analogRead(xPin);
 oldY = analogRead(yPin);
 Serial.begin(9600); // establish serial communication
}

void displayStickStatus() {
 // This function updates the display
 Serial.print("Sw: ");
 Serial.print(newSwitch);
 Serial.print(" X: ");
 Serial.print(newX);
 Serial.print(" Y: ");
 Serial.println(newY);
}

void loop() {
 int unsigned diff; // to track changes in X, Y coordinates
 // switch - no need to debounce this fancy switch
 newSwitch = digitalRead(switchPin);
 if (newSwitch != oldSwitch) {
 oldSwitch = newSwitch;
 displayStickStatus();
 }
 // X
 newX = analogRead(xPin);
 diff = newX - oldX;
 if (diff >= minimumChange) {
 oldX = newX;
 displayStickStatus();
 }
 // Y
 newY = analogRead(yPin);
 diff = newY - oldY;
 if (diff >= minimumChange) {
 oldY = newY;
 displayStickStatus();
 }
}

66

Joystick RGB LED

/*

 Joystick_RGB_LED

 This sketch reads the switch, x-axis, and y-axis of a joystick and sends the
 readings to the serial port - but only if the readings have changed. Any change
 in the switch is reported; changes in x and y are reported only if the change
 exceeds some minimum value as designed in the minimumChange constant below.

 The X,Y values are used to adjust the red and blue leds within an RGB LED.

 It appears that the joystick board includes debouncing circuitry, so no need to
 handle that in software.

 Note the use of the "displayStickStatus" and adjustColor functions. For more
 information about structured coding techniques, see
 https://www.arduino.cc/en/Reference/FunctionDeclaration

 Circuit Notes (I recommend that all connections be made via the breadboard):

 Joystick GND to GND
 Joystick +5V to 5V
 Joystick VRx to Pin A0
 Joystick VRy to Pin A1
 Joystick SW to Pin D2

 Orient RGB LED so that the longest leg is the second from the left. Then make
 these connections from left to right:
 1. (Leftmost pin) to Digital Pin 3 via a 220-ohm resistor
 2. (Longest leg) to GND
 3. to Digital Pin 5 via a 220-ohm resistor
 4. to Digital Pin 6 via a 220-ohm resistor

 M. Perone, WVU Psyc Dept, Feb 18, 2017

*/

// Arduino pin numbers; note only 2 of 3 "color" outputs are used
const int switchPin = 2; // digital pin connected to switch output
const int xPin = 0; // analog pin connected to X output
const int yPin = 1; // analog pin connected to Y output
const int redPin = 3; // Digital Pin 3 supports PWM
const int greenPin = 5; // Digital Pin 5 supports PWM
const int bluePin = 6; // Digital Pin 6 supports PWM

// To track changes in stick position and switch
int oldSwitch;
int newSwitch;
int oldX;
int newX;
int oldY;
int newY;
const int minimumChange = 5; // stick must change this much to trigger display
update

Listing continues…

https://www.arduino.cc/en/Reference/FunctionDeclaration

67

Joystick RGB LED cont’d

void setup() {
 pinMode(switchPin, INPUT_PULLUP);
 // next 3 lines: baseline reading of the stick
 oldSwitch = digitalRead(switchPin);
 oldX = analogRead(xPin);
 oldY = analogRead(yPin);
 // get RGB LED going...
 analogWrite(redPin,125);
 analogWrite(bluePin,125);
 analogWrite(greenPin,0); // not used
 Serial.begin(9600); // establish serial communication
}

void displayStickStatus() {
 // This function updates the display
 Serial.print("Sw: ");
 Serial.print(newSwitch);
 Serial.print(" X: ");
 Serial.print(newX);
 Serial.print(" Y: ");
 Serial.println(newY);
}

void adjustColor(){
 // Note use of "map" function, which works like this:
 //sensorValue = map(sensorValue, sensorMin, sensorMax, 0, 255);
 int redValue = map(newX, 0, 1023, 0, 255);
 int blueValue = map(newY,0,1023,0,255);
 analogWrite(redPin,redValue);
 analogWrite(bluePin,blueValue);
}

void loop() {
 int unsigned diff; // to track changes in X, Y coordinates
 // switch - no need to debounce this fancy switch
 newSwitch = digitalRead(switchPin);
 if (newSwitch != oldSwitch) {
 oldSwitch = newSwitch;
 displayStickStatus();
 }
 // X
 newX = analogRead(xPin);
 diff = newX - oldX;
 if (diff >= minimumChange) {
 oldX = newX;
 displayStickStatus();
 adjustColor();
 }
 // Y
 newY = analogRead(yPin);
 diff = newY - oldY;
 if (diff >= minimumChange) {
 oldY = newY;
 displayStickStatus();
 adjustColor();
 }
}

68

Joystick Ultrasonic RGB LED

/*

 Joystick_Ultrasonic_RGB_LED

 This sketch reads the switch, x-axis, and y-axis of a joystick and sends the
 readings to the serial port - but only if the readings have changed. The X,Y
 values are used to adjust the red and blue leds within an RGB LED.

 The sketch pings an ultrasonic sensor every 50 ms. If an object is within 20 cm,
 the LED is turned off.

 Note the use of the "displayStickStatus", "adjustColor", and "LED" functions. For
 more information aboutstructured coding techniques, see
 https://www.arduino.cc/en/Reference/FunctionDeclaration

 Circuit Notes (I recommend that all connections be made via the breadboard):

 Joystick GND to GND
 Joystick +5V to 5V
 Joystick VRx to Pin A0
 Joystick VRy to Pin A1
 Joystick SW to Pin D2

 Orient RGB LED so that the longest leg is the second from the left. Then make
 these connections from left to right:
 1. (Leftmost pin) to Digital Pin 3 via a 220-ohm resistor
 2. (Longest leg) to GND
 3. to Digital Pin 5 via a 220-ohm resistor
 4. to Digital Pin 6 via a 220-ohm resistor

 Ultrasonic Sensor VCC to 5V
 Ultrasonic Sensor Trig to Digital Pin 12
 Ultrasonic Sensor Echo to Digital Pin 11
 Ultrasonic Sensor GND to GND

 M. Perone, WVU Psyc Dept, Feb 18, 2017

*/

// FOR ULTRASONIC SENSOR
#include <NewPing.h> // Library for ultrasonic senSors
#define TRIGGER_PIN 12 // Arduino pin tied to trigger pin on the ultrasonic
sensor.
#define ECHO_PIN 11 // Arduino pin tied to echo pin on the ultrasonic sensor.
#define MAX_DISTANCE 300 // Maximum distance we want to ping for (in centimeters).
// Maximum sensor distance is rated at 400-500cm.
NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE); // NewPing setup of pins and
maximum distance.
long lastPingTime;
int newSonicDistance;
const int minimumCentimeters = 20; // if something gets closer than this we turn
off LED

Listing continues…

https://www.arduino.cc/en/Reference/FunctionDeclaration

69

70

Joystick Ultrasonic RGB LED cont’d

// FOR JOYSTICK
const int switchPin = 2; // digital pin connected to switch output
const int xPin = 0; // analog pin connected to X output
const int yPin = 1; // analog pin connected to Y output
// To track changes in stick position and switch
int oldSwitch;
int newSwitch;
int oldX;
int newX;
int oldY;
int newY;
const int minimumChange = 5; // stick must change this much to trigger display
update

// FOR RGB LED (note: only the red and blue pins are actually used)
const int redPin = 3; // Digital Pin 3 supports PWM
const int greenPin = 5; // Digital Pin 5 supports PWM
const int bluePin = 6; // Digital Pin 6 supports PWM

void setup() {
 pinMode(switchPin, INPUT_PULLUP);
 // next 3 lines: baseline reading of the stick
 oldSwitch = digitalRead(switchPin);
 oldX = analogRead(xPin);
 oldY = analogRead(yPin);
 // get RGB LED going...
 analogWrite(redPin, 125);
 analogWrite(bluePin, 125);
 analogWrite(greenPin, 0); // not used
 Serial.begin(9600); // establish serial communication
}

// FUNCTION TO SEND DATA TO SERIAL PORT
void displayStickStatus() {
 Serial.print("Sw: ");
 Serial.print(newSwitch);
 Serial.print(" X: ");
 Serial.print(newX);
 Serial.print(" Y: ");
 Serial.print(newY);
 Serial.print(" Dist: ");
 Serial.println(newSonicDistance);
}

// FUNCTION TO CONTROL COLOR OF RGB LED
void adjustColor() {
 // Note use of "map" function, which works like this:
 //sensorValue = map(sensorValue, sensorMin, sensorMax, 0, 255);
 int redValue = map(newX, 0, 1023, 0, 255);
 int blueValue = map(newY, 0, 1023, 0, 255);
 analogWrite(redPin, redValue);
 analogWrite(bluePin, blueValue);
}

Listing continues…

71

Joystick Ultrasonic RGB LED cont’d

// FUNCTION TO TURN RGB LED ON AND OFF
// Note that it returns "true" if LED is on and "false" is LED is off.
bool LED(String status) {
 if (status == "Off") {
 analogWrite(redPin, 0);
 analogWrite(greenPin, 0);
 analogWrite(bluePin, 0);
 return false;
 }
 else
 {
 adjustColor();
 return true;
 }
}

void loop() {
 int unsigned diff; // to track changes in X, Y coordinates
 bool statusLED;
 // Ping the ultrasonic sensor every 50 ms
 if ((millis() - lastPingTime) > 49) {
 newSonicDistance = sonar.ping_cm(); // get distance in cm
 lastPingTime = millis();
 if (newSonicDistance < minimumCentimeters) {
 statusLED = LED("Off");
 }
 else
 {
 statusLED = LED("On");
 }
 }
 // switch - no need to debounce this fancy switch
 newSwitch = digitalRead(switchPin);
 if (newSwitch != oldSwitch) {
 oldSwitch = newSwitch;
 displayStickStatus();
 }
 // X
 newX = analogRead(xPin);
 diff = newX - oldX;
 if (diff >= minimumChange) {
 oldX = newX;
 displayStickStatus();
 if (statusLED == true) {
 adjustColor();
 }
 }
 // Y
 newY = analogRead(yPin);
 diff = newY - oldY;
 if (diff >= minimumChange) {
 oldY = newY;
 displayStickStatus();
 if (statusLED == true) {
 adjustColor();
 }
 }
}

72

Servo Sweep

/*

Servo_Sweep

This sketch moves a servo through its full range of motion, from
0 to 180 degrees, back and forth. The number of degrees in each
change of position and the pause between each change of position
are stored in variables "degreeChange" and "pauseDuration".

Circuit Notes:

Servo brown wire to GND
Servo red wire to 5V
Servo orange wire to Digital Output 9

M. Perone, WVU Psyc Dept, Feb 24, 2017

 */

#include <Servo.h> //invoke servo librarry
Servo myservo;//create servo object to control a servo
int degreeChange = 5; // for incrementing or decrementing servo position
int pauseDuration = 200; // time between increments/decrements

void setup() {
 Serial.begin(9600);
 myservo.attach(9);//attach the servo on pin 9 to servo object
 myservo.write(0);//back to 0 degrees
 delay(2000);//wait a couple seconds
}

void loop() {
 // this for-loop increments the degrees from 0 to 180
 for (int degrees = 0; degrees < 180; degrees = degrees + degreeChange) {
 myservo.write(degrees); // move the servo to the designated postion
 Serial.print("Up "); // send position info to serial monitor
 Serial.println(degrees);
 delay (pauseDuration);
 }
 // this for-loop decrements from 180 to 0
 for (int degrees = 180; degrees > 0; degrees = degrees - degreeChange) {
 myservo.write(degrees); // move the servo to the designated position
 Serial.print("Down "); // send position info to serial montior
 Serial.println(degrees);
 delay (pauseDuration);
 }
}

73

Photocell

/*

 Photocell

 This sketch performs an analog read on a photocell - also known
 as a photoresistor - connected to Arduino Analog Pin 0. It converts
 the raw reading to voltage. The raw reading can be from 0-1023 and
 the voltage from 0.0 to 5.0. The sketch sends the raw reading and the
 voltage to the serial port twice per second.

 A photoresistor is a light-sensitive variable resistor. As the intensity
 of the light falling on the photoresister is raised, the device's resistance is
 lowered. This in turn leads to an increase in the voltage received from
 the device. So there is a direct relation between the light intensity
 and the voltage.

 A photocell is wired in the same way as a potentiometer. One lead is connected to
 5V. The other lead is connected to an analog input (A0 in the sketch) AND to
 Ground via a 1K-ohm resistor. The only difference is this: With a potentiometer
 Resistance is controlled by turning a knob, but with a photoresistor, resistance
 is controlled by the intensity of light.

 Circuit notes:

 1. Photocell Lead 1 to 5v (lead numbering is arbitrary)
 2. Photocell Lead 2 to Analog Input 0
 3. Photocell Lead 2 to GND via 1K resistor

 M. Perone, WVU Psyc Dept, Mar 19, 2017

*/

int lightPin = 0; // Arduino analog input to receive photocell

void setup() {
 Serial.begin(9600); // set up serial communication
}

void loop() {
 int reading = analogRead(lightPin); // read photocell
 float photoV = (reading * 5.0) / 1023.0; // convert to voltage
 Serial.print("Raw: "); // show the results...
 Serial.print(reading);
 Serial.print(", Volts: ");
 Serial.println(photoV);
 delay(500); // wait a bit
}

74

Photocell Response Count

/*

 Photocell_Response_Count

 This sketch increments a response counter every time a photobeam is broken.
 The circuit should have a white LED aimed at a photocell, without enough
 space in between them to allow a piece of cardboard to be swiped through the
 space. If the photocell reading drops sufficiently a reponse is counted. The
 threshold for counting a response is in the constant 'detectionThreshold'.

 The code also has some debouncing code. This is because as an object passed
 Between the LED and the photocell, more than one reduced reading may be
 detected. This problem is prevented by ignoring changes in the readings that
 occur "too soon" after the last recorded change. The constant 'debounceInterval'
 defines what is "too soon."

 A photocell is wired in the same way as a potentiometer. One lead is connected to
 5V. The other lead is connected to an analog input (A0 in the sketch) AND to
 Ground via a 1K-ohm resistor.

 Circuit notes:
 1. Photocell Lead 1 to 5v (lead numbering is arbitrary)
 2. Photocell Lead 2 to Analog Input 0
 3. Photocell Lead 2 to GND via 1K resistor
 4. LED Positive Lead (the longer one) to Digital Output 8
 5. LED Negative Lead (the shorter one) to GND via a 330-ohm resistor.

 M. Perone, WVU Psyc Dept, Mar 19, 2017

*/

Listing continues…

75

Photocell Response Count cont’d

int lightPin = 0; // analog input receiving photocell
int lightSource = 8; // digital output to control LED
int oldReading; // to keep tack of last photocell reading
int newReading; // to store current photocell reading
const int detectionThreshold = 150; // required reduction in reading to count
response
int responseCounter; // to count responses
int lastResponseTime; // for debounce
const int debounceInterval = 300; // for debounce

void setup() {
 pinMode(lightSource, OUTPUT); // set output pin mode
 digitalWrite(lightSource, HIGH); // turn on light source
 delay (100);// give it time to power up
 // next 2 lines: initialize photocell reading variables
 newReading = analogRead(lightPin); // read photocell
 oldReading = newReading;
 Serial.begin(9600); // set up serial communication
}

void loop() {
 newReading = analogRead(lightPin); // read photocell
 int difference = abs(oldReading - newReading);
 if ((difference > detectionThreshold) && ((millis() - lastResponseTime) >=
debounceInterval)) {
 // pay heed if reading has changed enough AND enough time has passed since last
change
 if (newReading < oldReading) { // and because reading has dropped, count a
response
 responseCounter = responseCounter + 1; // increment the counter
 // Next 6 lines: Send data to serial port
 Serial.print("Old: ");
 Serial.print(oldReading);
 Serial.print(", New: ");
 Serial.print(newReading);
 Serial.print(", Responses: ");
 Serial.println(responseCounter);
 }
 // save reading and time of this recorded change
 oldReading = newReading;
 lastResponseTime = millis();
 }
}

76

Two Buttons
The circuit for this sketch is a simple extension of the circuit for “Count Button Presses.” You just add another
button!

/*

 Two Buttons

 This sketch scans 2 digital input ports and detects debounced inputs. A
 correction is made for possible bounce in the button's electical contacts. All of
 the variables that are used to differential a button's status (low or high), time
 the debouncing correction, or count presses have been declared as 2-element
 arrays. The first element is labeled 0, and the second is labeled 1. Note also
 the use of the "for" control structure.

 Circuit Notes:

 Button 1: Connect one pin to GND on your breadboard. Connect the other pin to
 Digital Pin 8
 Button 2: Connect one pin to GND on your breadboard. Connect the other pin to
 Digital Pin 9

 M. Perone
 WVU Psychology Dept
 February 16, 2017

*/

Listing continues…

77

Two Buttons cont’d

// declare variable for counting button presses
int respCount[2];

// declare variables to calculate response rate in this session
long sessionStartTime;

// declare variables for keeping track of the button's state
int newButtonState[2];
int oldButtonState[2];

// declare variable and constant for debouncing code
int lastButtonChangeTime[2];
const int debounceDelay = 5; // 5-ms delay for debouncing

// set the response pins as D8, D9
int responsePin[2] = {8,9};

void setup() {
 // set the response pin to input with internal pullup
 pinMode(responsePin[0], INPUT_PULLUP);
 pinMode(responsePin[1], INPUT_PULLUP);
 // connect to serial port
 Serial.begin(9600);
 // record start time of this session
 sessionStartTime = millis();
}

void loop() {

 // *** LOOK FOR A BUTTON PRESS ***
 // read the state of the pin
 for (int x = 0; x < 2; x++) {

 newButtonState[x] = digitalRead(responsePin[x]);
 // is the state changed since our last read AND at least the debounce
 // delay has passed?
 if ((newButtonState[x] != oldButtonState[x]) &&
 ((millis() - lastButtonChangeTime[x]) >= debounceDelay)) {
 // Yes, the button state has changed and enough time has passed to pay
 // attention to the change
 // make a note of the change in state
 oldButtonState[x] = newButtonState[x];
 // and make a note of the time of this change
 lastButtonChangeTime[x] = millis();
 // is the new state of the button
 // LOW, i.e., button is pressed?
 if (newButtonState[x] == LOW) {
 // yes, button is pressed, count it
 respCount[x] = respCount[x] + 1;
 // and display it on the LCD
 Serial.print("Button A: ");
 Serial.print(respCount[0]);
 Serial.print(" Button B: ");
 Serial.println(respCount[1]);
 }
 }
 }
}

78

Stepper Sweep

/*

 Stepper_Sweep

 This sketch moves a 28BYJ-48 stepper motor through its full range of
 motion, clockwise and counter-clockwise, with a 2-s pause between
 each sweep. The 28BYJ-48 stepper motor requires 2048 steps for an
 entire revolution when using the standard Arduino stepper ibrary.
 A speed of 12 rpm works eliably in both directions in my testing.

 An informative guide to this stepper motor, with links to advanced
 stepper libraries, is here: https://arduino-info.wikispaces.com/SmallSteppers

 Circuit Notes:

 Our stepper motor comes with printed circuit board that interfaces it with the
 Arduino. Plug the motor into the board (the connector will fit only one way),
 then make the following connections to the Arduino:

 Along one edge of the circuit board are 4 pins for power. A jumper
 covers the rightmost pair, leaving the first two available. Connect:
 "-" to GND
 "+" to 5V

 Along another edge are 4 input pins. Connect them to the Arudino as follows:
 IN1 to Digital 8
 IN2 to Digital 9
 IN3 to Digital 10
 IN4 to Digital 11

 M. Perone, WVU Psyc Dept, Mar 3, 2017

*/

#include <Stepper.h> // stepper library
const int stepsPerRevolution = 2048; // steps per revolution, empirically derived
const long rpm = 12; // revolutions per minute, assigned by trial and error
// initialize the stepper library on pins 8 through 11; note that the syntax
// for this instruction is:
// Stepper nameOfStepperObject (stepsPerRevolution, PinToIn1, PinToIn3, PinToIn2,
PinToIn4)
Stepper myStepper(stepsPerRevolution, 8, 10, 9, 11);

void setup() {
 myStepper.setSpeed(rpm); // set stepper speed
}

void loop() {
 myStepper.step(2048); // clockwise
 delay(2000);
 myStepper.step(-2048); // counter-clockwise
 delay(2000);
}

https://arduino-info.wikispaces.com/SmallSteppers

79

Stepper by Steps

/*
 Stepper_by_Steps

 This sketch moves a stepper motor by the number of steps designated
 by the user via the serial communications interface. Our motor, the
 ubiquitous 28BYJ-48 requires 2048 steps for an entire revolution when
 using the standard Arduino stepper library, and a speed of 12 rpm works
 reliably in both directions in my testing.

 An informative guide to this stepper motor, with links to advanced
 stepper libraries, is here: https://arduino-info.wikispaces.com/SmallSteppers

 Circuit Notes:

 Our stepper motor comes with printed circuit board that interfaces it with the
 Arduino. Plug the motor into the board (the connector will fit only one way),
 then make the following connections to the Arduino:

 Along one edge of the circuit board are 4 pins for power. A jumper
 covers the rightmost pair, leaving the first two available. Connect:
 "-" to GND
 "+" to 5V

 Along another edge are 4 input pins. Connect them to the Arudino as follows:
 IN1 to Digital 8
 IN2 to Digital 9
 IN3 to Digital 10
 IN4 to Digital 11

 M. Perone, WVU Psyc Dept, Feb 25, 2017, Revised Mar 3, 2017
*/

#include <Stepper.h> // stepper library
const int stepsPerRevolution = 2048; // steps per revolution, empirically derived
const long rpm = 12; // revolutions per minute, assigned by trial and error
// initialize the stepper library on pins 8 through 11; note that the syntax
// for this instruction is:
// Stepper nameOfStepperObject (stepsPerRevolution, PinToIn1, PinToIn3, PinToIn2,
PinToIn4)
Stepper myStepper(stepsPerRevolution, 8, 10, 9, 11);

void setup() {
 Serial.begin(9600);// set up serial port
 Serial.setTimeout(20); // 10 ms to read string
 myStepper.setSpeed(rpm); // set stepper speed
}

void loop() {
 if (Serial.available() > 0) { // act only if instructed
 String instruction = Serial.readString(); // get the instruction
 int numberOfSteps = instruction.toInt(); // convert string to an integer
 Serial.print("Stepping: ");
 Serial.print(numberOfSteps);
 Serial.println(" times.");
 myStepper.step(numberOfSteps); // position the stepper
 }
}

https://arduino-info.wikispaces.com/SmallSteppers

80

Stepper by Degrees
The dial and pointer for this sketch are included as an appendix.

/*
 Stepper_by_Degrees

 This sketch positions a stepper motor at any degree position between
 0 and 360 (with 0 and 360 referring to the same position). The desired
 position is specified by the user via the serial communications interface.
 Our motor, the 28BYJ-48, requires 2048 steps for an entire revolution. This
 sketch translates steps to degrees. There is some error in this because
 2048 is not wholly divisble by 360, but the results are not bad. With regard
 to motor speed, in my tests 12 rpm works reliably in both directions.

 To test the accuracy of the positioning, you will need a circular meter dial
 showing degrees, and a pointer that is affixed to the motor. These items are
 in the Appendices. Cut out the meter face, afix to the motor,
 and then add the pointer.

 An informative guide to this stepper motor, with links to advanced
 stepper libraries, is here: https://arduino-info.wikispaces.com/SmallSteppers

 Circuit Notes:

 Our stepper motor comes with printed circuit board that interfaces it with the
 Arduino. Plug the motor into the board (the connector will fit only one way),
 then make the following connections to the Arduino:

 Along one edge of the circuit board are 4 pins for power. A jumper
 covers the rightmost pair, leaving the first two available. Connect:
 "-" to GND
 "+" to 5V

 Along another edge are 4 input pins. Connect them to the Arudino as follows:
 IN1 to Digital 8
 IN2 to Digital 9
 IN3 to Digital 10
 IN4 to Digital 11

 M. Perone, WVU Psyc Dept, Feb 25, 2017, Revised Mar 3, 2017
*/

Listing continues…

81

Stepper by Degrees cont’d

#include <Stepper.h> // stepper library
const int stepsPerRevolution = 2048; // steps per revolution, empirically derived
const long rpm = 12; // revolutions per minute, assigned by trial and error
// initialize the stepper library on pins 8 through 11; note that the syntax
// for this instruction is:
// Stepper nameOfStepperObject (stepsPerRevolution, PinToIn1, PinToIn3, PinToIn2,
PinToIn4)
Stepper myStepper(stepsPerRevolution, 8, 10, 9, 11);
int oldDegrees; // to track changes in degree settings
int newDegrees; // to track changes in degree settings

void setup() {
 Serial.begin(9600);// set up serial port
 Serial.setTimeout(20); // 20 ms to read string, more than enough
 myStepper.setSpeed(rpm); // set stepper speed
}

void loop() {
 if (Serial.available() > 0) { // act only if instructed
 String instruction = Serial.readString(); // get the instruction
 newDegrees = instruction.toInt(); // convert string to an integer
 if ((newDegrees != oldDegrees) && (newDegrees >= 0) && (newDegrees <= 360)) {
 // act only if the new position differs from the old, and the new position
 // is between 0 and 360 degrees
 // next line: calculate the steps needed to change the motor's position
 double change = ((newDegrees - oldDegrees) / 360.0) * stepsPerRevolution;
 int numberOfSteps = int(change); // convert to an integer
 myStepper.step(numberOfSteps); // position the stepper
 Serial.print ("New: "); // tell us about it...
 Serial.print(newDegrees);
 Serial.print(", Old: ");
 Serial.print(oldDegrees);
 Serial.print (", Change: ");
 Serial.print(change);
 Serial.print(", Steps: ");
 Serial.println(numberOfSteps);
 // update old degrees. In the special case in which the user has asked
 // to position the motor at 360 degrees, convert to 0 (because 0 and 360
 // refer to the same position, and it simplifies cacluations if we refer
 // to that position in a consistent way.
 if (newDegrees == 360) {
 oldDegrees = 0;
 } else {
 oldDegrees = newDegrees;
 }
 }
 }
}

82

Temperature Humidity Monitor

/*

Temperature_Humidity_Monitor

This sketch uses the Simple DHT library to take periodic readings of
temperature and humidity from a DHT11 sensor. The sensor has been
mounted to a small circuit board with three pins as described below.

Circuit Notes:

These notes apply to the circuit board in the Elegoo Super Starter Kit.
Hold the circuit board with the senor facing you. The three pins from left
to right should be wired as follows:
Left pin (data pin) to Arduino Digital 2
Center pin to 5V
Right pin to GND

M. Perone, WVU Psyc Dept, Mar 20, 2017

*/

#include <SimpleDHT.h> // reference library
SimpleDHT11 myDHT11sensor; // library requires that we name our sensor
int pinForSensor = 2; // sensor data pin connected to Digital Input 2
byte tempC; // library requires byte to receive Celsius temp
byte humidity; // library requires byte to receive humidity
float tempF; // to save Celsius to Farenheit conversion
long sampleCount; // to count the number of readings

void setup() {
 Serial.begin(9600); // start serial communcations
}

void loop() {
 // next lines: read the sensor at pinDHT11 and receive temperature and
 // humidity. If results are NULL, the function is True and we should
 // print an error message and keep trying to read the sensor.
 if (myDHT11sensor.read(pinForSensor, &tempC, &humidity, NULL)) {
 Serial.print("Attempt to read DHT11 failed. Retrying.");
 }
 else {
 sampleCount = sampleCount + 1; // increment counter
 tempF = ((tempC * 1.8) + 32.0); // convert Celsius to Farenheit
 Serial.print(sampleCount);
 Serial.print(": ");
 Serial.print(tempC);
 Serial.print(" C, ");
 Serial.print(tempF);
 Serial.print(" F, ");
 Serial.print((int)humidity); Serial.println(" % humidity");
 delay(2500); // read the sensor every 2.5 seconds
 }
}

83

Remote Signal Reception

/*

 Remote_Signal_Reception

 This sketch demonstrates receiving IR codes with the IRrecv function of the
 IRremote library. The sketch is designed to receive signals from the Elegoo
 Remote control from the company's "Super Starter Kit" using the IR
 detector/demodulator in the kit. The signal pin of the board must be connected
 to the input "receivePin", which is assigned to Digital 11 in this particular
 sketch. The received code, in hexadecimal format, is sent to the serial monitor.

 I have tried several other remotes lying around my home, and they work with
 the IR detector/demodulator board and this sketch.

 The IRremote library was developed by Ken Shirriff, http://arcfn.com
 Office Website for the IRremote library: http://z3t0.github.io/Arduino-IRremote/
 Documentation here: https://github.com/z3t0/Arduino-IRremote/wiki

 Additional information here: https://arduino-info.wikispaces.com/IR-RemoteControl
 This website warns: "If you have a late version of Arduino with a library
 IRRobotRemote, it may conflict and you may have to remove that library. Make
 sure to delete Arduino_Root/libraries/RobotIRremote, where Arduino_Root refers to
 the install directory of Arduino. The library RobotIRremote has similar
 definitions to IRremote and causes errors."

 Circuit Notes: On the IR board, there are 3 pins labeled G, R, Y.
 Connect as follows:

 G to GND
 R to 5V
 Y to Arduino Pin 11 (this is the signal)

 M. Perone, WVU Psyc Dept, Mar 4, 2017

*/

#include <IRremote.h> // library
int receivePin = 11; // receiver connected to Digital Pint 11
IRrecv irrecv(receivePin); // connect
decode_results signal; // create object for received signal

void setup() {
 Serial.begin(9600); // Set up serial communications
 irrecv.enableIRIn(); // Start the receiver
}

void loop() {
 if (irrecv.decode(&signal)) { // proceed only if we have a signal
 Serial.println(signal.value, HEX); // display it in hexadecimal format
 delay (250); // pause before reactivating receiver, to avoid extra signals
 // from the noisy Elegoo remote we are using
 irrecv.resume(); // Get ready to receive the next value
 }
}

http://arcfn.com/
http://z3t0.github.io/Arduino-IRremote/
https://github.com/z3t0/Arduino-IRremote/wiki
https://arduino-info.wikispaces.com/IR-RemoteControl

84

Remote Signal Decoding Elegoo

/*
 Remote_Signal_Decoding_Elegoo

 This sketch demonstrates receiving IR codes with the IRrecv function of the
 IRremote library. As each code is received, the sketch returns, via the serial
 port, the name of the button on the Elegoo remoted control that was pressed.
 The sketch is designed to receive signals from the Elegoo remote control from the
 company's "Super Starter Kit" using the IR detector/demodulator in the kit. The
 signal pin of the board must be connected to the input "receivePin", which is
 assigned to Digital 11 in this particular sketch. The received code, in
 hexadecimal format, is sent to the serial monitor.

 The IRremote library was developed by Ken Shirriff, http://arcfn.com
 Office Website for the IRremote library: http://z3t0.github.io/Arduino-IRremote/
 Documentation here: https://github.com/z3t0/Arduino-IRremote/wiki

 Additional information here: https://arduino-info.wikispaces.com/IR-RemoteControl
 This website warns: "If you have a late version of Arduino with a library
 IRRobotRemote, it may conflict and you may have to remove that library. Make
 sure to delete Arduino_Root/libraries/RobotIRremote, where Arduino_Root refers to
 the install directory of Arduino. The library RobotIRremote has similar
 definitions to IRremote and causes errors."

 Circuit Notes: On the IR board, there are 3 pins labeled G, R, Y. Connect:
 G to GND; R to 5V; Y to Arduino Pin 11 (this is the signal)

 M. Perone, WVU Psyc Dept, Mar 15, 2017
*/

#include <IRremote.h> // library
int receivePin = 11; // receiver connected to Digital Pint 11
IRrecv irrecv(receivePin); // connect
decode_results signal; // create object for received signal

void setup() {
 Serial.begin(9600); // Set up serial communications
 irrecv.enableIRIn(); // Start the receiver
}

void loop() {
 if (irrecv.decode(&signal)) { // proceed only if we have a signal
 // compare the received value against the various possible valiue
 // (expressed in hexademical numerals)
 switch (signal.value) {
 case 0xFFA25D:
 Serial.println("Power");
 break;
 case 0xFF629D:
 Serial.println("Vol+");
 break;
 case 0xFFE21D:
 Serial.println("Func/Stop");
 break;
 case 0xFF22DD:
 Serial.println("Rewind");
 break;

Listing continues…

http://arcfn.com/
http://z3t0.github.io/Arduino-IRremote/
https://github.com/z3t0/Arduino-IRremote/wiki
https://arduino-info.wikispaces.com/IR-RemoteControl

85

Remote Signal Decoding Elegoo cont’d

 case 0xFF02FD:
 Serial.println("Play/Stop");
 break;
 case 0xFFC23D:
 Serial.println("Fast Forward");
 break;
 case 0xFFE01F:
 Serial.println("Down");
 break;
 case 0xFFA857:
 Serial.println("Vol-");
 break;
 case 0xFF906F:
 Serial.println("Up");
 break;
 case 0xFF6897:
 Serial.println("0");
 break;
 case 0xFF9867:
 Serial.println("EQ");
 break;
 case 0xFFB04F:
 Serial.println("ST/Repeat");
 break;
 case 0xFF30CF:
 Serial.println("1");
 break;
 case 0xFF18E7:
 Serial.println("2");
 break;
 case 0xFF7A85:
 Serial.println("3");
 break;
 case 0xFF10EF:
 Serial.println("4");
 break;
 case 0xFF38C7:
 Serial.println("5");
 break;
 case 0xFF5AA5:
 Serial.println("6");
 break;
 case 0xFF42BD:
 Serial.println("7");
 break;
 case 0xFF4AB5:
 Serial.println("8");
 break;
 case 0xFF52AD:
 Serial.println("9");
 break;
 }
 delay (250); // pause before reactivating receiver, to avoid extra signals
 // from the noisy Elegoo remote we are using
 irrecv.resume(); // get ready to receive the next value
 }
}

86

Transistor to Relay

/*
 Transitor_to_Relay

 This trivially simple sketch is designed to accompany a relatively
 sophisticated circuit. The sketch simply turns a digital output on
 and off. The circuit is designed to illustrate how to use a transistor
 to operate a relay, and to use the relay to control something. In our
 circuit, we will used LEDs, but we could be controlling motors or other
 more interesting stuff.

 M. Perone, WVU Psyc Dept, Mar 26, 2017

*/

const int relayPin = 3; // let's use Digital Pin 3
const int onPause = 1000; // relay will be on this long
const int offPause = 3000; // relay will be off this long

void setup() {
 pinMode(relayPin, OUTPUT);
}

void loop() {
 digitalWrite(relayPin, HIGH); // turn the relay on
 delay(onPause); // wait
 digitalWrite(relayPin, LOW); // turn the relay off
 delay(offPause); // wait
}

87

Transistor to Relay cont’d

To operate the transistor with the Arduino, connect Transistor Lead 2 (the
“base” of the transistor) to Arduino Digital 3 via a 330-ohm resistor.

To arrange the current to be switched by the transistor, (a) connect
Transistor 3 (the “collector”) to 5V, and (b) connect Transistor 1 (“emitter”)
to Relay 1 (the “operate” pin of the relay). When the Arduino puts 5V on
transistor base, the collector and emitter will be connected and 5V will flow
to the operate pin of the relay.

Connect Relay 3 (the other operate pin) to GND. When the transistor
applies 5V to the Pin 1 of the relay, current will flow through the coil
because the other side of the coil (Pin 3) is connected to GND. An
electromagnetic field will move the relay’s switch.

To arrange for current to switched by the relay: (a) connect Relay 2
(Common) to 5V, (b) connect Relay 4 (Normally Open) to the long lead
(positive lead) of the green LED, and (c) connect Relay 5 (Normally Closed)
to long lead of red LED.

Connect the short leads of both LEDs to GND via a 220-ohm resistor.

When the Arduino sketch turns on the transistor, the transistor operates the relay, and the relay turns on the
green led (via the Normally Open pin of the relay). When the sketch turns off the transistor, the relay returns to
it resting or “normal” state, and the red LED is lit (by current flowing through the Normally Closed pin).

Parts
o Relay
o Transistor
o 1 Resistor @ 330 ohms
o 2 Resistors @ 220 ohms
o Red LED
o Green LED

Circuit diagram for the Songle SRD-
05VDC-SL-C relay, as viewed from the
top of the device. Pinout, counter-
clockwise from top left: 1. Operate coil
(apply 5V), 2. Common of switch, 3.
Operate coil (apply GND), 4. Normally
open side of switch, 5. Normally closed
side of switch.

Our transistor. To identify the pins,
orient the transistor so the flat side is
facing you. Then, from left to right, are
the 1. Emitter, 2. Base, and 3. Collector.

88

Optocoupler Test

An optocoupler – also known as an “optoisolator” – is a transistor
that is operated by light rather than by the application of an electric
current. This allows you to have two power sources communicate
safely – when, for example, relatively high-voltage devices in the lab
must be sensed by the low-voltage Ardunio. It can be used to
protect the Arduino from high voltages.

Here is the circuit diagram of the 4N25 optocoupler, a widely used model, alongside a drawing of the chip. To
orient the chip, look for a little circle in one corner; this marks Pin 1. (It won’t be as easy to see as the one in the
drawing.) From there, the pins are numbered sequentially in counter-clockwise order. Passing current across
Pins 1 and 2 lights an internal infrared LED. This causes the internal phototransistor to close the circuit between
Pin 4 (the transistor’s “emitter”) and Pin 5 (the “collector.”) The infrared LED can handle relatively high voltages
(with an appropriately sized resistor in series with it), so will run the high-voltage output of lab devices across
Pins 1 and 2. We will run the Arduino Uno’s 5V current across Pins 4 and 5.

In the experimental psychology lab, operant conditioning chambers commonly are supplied with 24V to 28V.
This is used to operate stimulus lamps and electromagnetic devices such as pellet dispensers. The 28V also is
used to run through switches that are closed when, for example, a rat presses a lever. To count the presses, our
Arduino needs to sense these switch closures. The problem is that the Arduino would be destroyed if we applied
24V to one of its input pins. The optocoupler solves the problem. On the lab side, Pin 1 is connected to the
positive pole of the 24V lab power source via a resistor. Pin 2 is connected to one side of the lever’s switch; the
other side of the switch is connected to the GND pole of the 24V supply. When the rat presses the lever, 24V
current flows across Pins 1 and 2 and the infrared LED is turned on. On the Arduino side, we need to apply GND

from the Arduino’s own power supply to
an input pin in order for the Arduino to
sense the input. Pin 4 of the optocoupler
is connected to GND from the Arduino,
and Pin 5 is connected to one of the
Arduino’s digital input pins. When the
circuit across Pins 4 and 5 is closed, the
Arduino’s input pin is set LOW and the
input is detected.

When the rat presses the lever, 24V of lab
power turns on the infrared LED, which
turns on the phototransistor, which allows
the Arduino’s own 5V power to flow back
to its input pin. The two sources of power
never touch. They are “coupled” with light
from the LED – they are opto-coupled.

To illustrate the use of the optocoupler in
our workshop, we use a 9V battery in place
of the 24V lab power supply, as illustrated
here. Note that the left power rails of the
breadboard are connected to the battery,
and the right rails are connected to the
Arduino’s power.

Parts
o LED
o 4N25 optocoupler
o Push button
o 220-ohm resistor
o 1K-ohm resistor
o 9V battery
o Battery leads

89

Optocoupler Test cont’d

/*

Optocoupler Test

This trivial sketch is designed to turn an LED on or off depending on
whether a button is pressed or released. It is intended to test a
circuit that is a bit more sophisticated: one in which an optocoupler
is used to link a button powered at 9V with the Arduino input pin. If
you wired the 9V output of the button directly to the Arduino's pin,
you would damage it. The optocoupler safely isolates the high voltage
from the low-voltage that powers the Arduino. (From he Arduino's
standpoint, 9V is high voltage. This setup with a 9V battery is
designed to mimics common laboratory experiments in which 28V devices
must provide input to the Arduino.

Circuit Notes:

The 4N25 Optocoupler has six pins. Pin 1 is marked with
a dot on the chip. The numbering system is counter-
clockwise: 1 6
 2 5
 3 4

Our circuit uses four pins connected as follows:
 1 to +9V via a 1K-ohm resistor
 2 to one side of button
 4 to Arduino GND (via breadbroad, please)
 5 to Arduino Digital Pin 7

The other side of the button is connected to -9V.
Arduino Digital Pin 6 is connected to the positive lead of the LED
Negative lead of LED is connected to Arduino GND via 220k-ohm resistor

M. Perone, WVU Psyc Dept
April 12, 2017

*/

const int button = 7;
const int LED = 6;

void setup() {
 pinMode(button, INPUT_PULLUP); // input in pullup mode
 pinMode(LED, OUTPUT); // output
}

void loop() {
 if (digitalRead(button) == LOW) {
 digitalWrite(LED, HIGH); // button pressed, tunr on LED
 } else {
 digitalWrite(LED, LOW); // button released, turn off LED
 }
}

90

Analog IO with PWM

/*

Analog IO with PWM

This sketch reads a potentiometer, converts the result to a number between 0 and
255, and uses the new number to control the duty cycle of a pin capable of Pulse
Width Modulation that is connected to an LED. By adjusting the pot, the user
changes the brightness of the LED. Note that small variations in the pot reading
are ignored. The sketch also converts the potentiometer reading to voltage.

Circuit Notes:

LED short lead to GND via 220-ohm resistor
LED long lead to Arduino Pin 3
10K Pot Side Pins: one to GND, one to 5V
10K Pot Middle Pin to Arduino Pin A0

M. Perone, WVU Psyc Dept, April 18, 2017

*/

Listing continues…

91

Analog IO with PWM cont’d

int oldPot; // to store old reading from pot
int newPot; // to store new reading from pot
int difference; // to store the difference in readings
float potVolts; // to store voltage with decimal fraction
const int analogPin = A0; // could have said 14 instead of A0

void setup() {
 Serial.begin(9600); // set up serial communications
}

void loop() {
 newPot = analogRead(analogPin); // read pin connected to 10K pot
 difference = newPot - oldPot; // calculate difference between old and new
 difference = abs(difference); // convert to absolute difference
 if (difference > 3) { // if the difference is 4 or more (range is 0-1023)...
 int dutyCycle = map(newPot, 0, 1023, 0, 255); // convert to duty cycle for PWM
 analogWrite(3, dutyCycle); // adjust brightness of LED via PWM
 // For fun, let's convert the newPot value to voltage
 potVolts = map(newPot, 0, 1023, 0, 500); // convert pot reading to volts x 100
 potVolts = potVolts / 100.0; // convert to voltage expressed to nearest .01 V
 // Now send numbers to serial port
 Serial.print("Analog Input: ");
 Serial.print(potVolts);
 Serial.print (" volts. LED brightenss: ");
 Serial.println(dutyCycle);
 oldPot = newPot; // the new reading is now the old reading
 }
}

92

Part 7:
Exercises

A later edition of this work may have a more systematic progression of exercise (easy to hard, simple to
complex). These, however, are in no particular order.

1. Modify the Blink sketch by (a) changing the delay values and (b) changing the output pin (and associated
wiring).

2. Build a circuit with a button and an LED. Write a sketch that: (a) Counts button presses. Each press, no
matter how long in duration, increments the counter once. (b) Includes debouncing code. (c) After every 5
presses, turns on the LED for 2 seconds. During this time, button presses are ignored.

3. Modify the sketch in Exercise 2 to add data transmission through the serial port: (a) After each press, send
the current value of the counter in this format: Responses: 1. (b) When the LED is turned on, send a
message to the serial port indicating that the LED has been turn on, and include a count of the LED operations:
LED 1 … LED 2 … etc.

4. Modify the sketch in Exercise 3 to give the user some control over the sketch: (a) When the user sends a
number to the Arduino over the serial port, that number is used to decide how many button presses are
required to light the button. If, for example, the user sends ‘25’ then the LED will be turned on after every 25
responses. For guidance, look at the sketch entitled “Reading Serial Strings as Parameters” in Part 6.

5. Build the circuit shown here.
A 10-k ohm potentiometer
provides input to Pin A0, a
button provides input to Pin 2,
and Pin 6 outputs to an LED.
Write a sketch that receives
input from the potentiometer
on Pin A0 and displays the raw
result on the serial monitor.
You will need to use the
analogRead() function. You
may wish to impose a delay of
500 milliseconds or so after
every display – otherwise, you
sketch will be printing like wild.

6. Using the circuit shown
here, modify the sketch in
Exercise 6 so that information
is sent to the serial monitor
only if the raw input value on
A0 changes by at least 5. In this sketch, no delay should be needed.

7. Using the circuit shown here, write a sketch that receives input from the potentiometer on Pin A0, maps the
input value to a number between 0 and 255, and uses that number to vary the brightness of the LED. You will
need to use the Pulse Width Modulation capability of Pin 6 and this is accomplished with the analogWrite()
function.

93

8. Using the circuit shown on the previous page, wite a sketch that receives input from the button on Pin 2. The
sketch should count the button presses and, using analogWrite(), vary the brightness of the LED depending on
the button count, as follows:

0 = 0
1 = 7
2 = 15
3 = 32
4 = 63
5 = 127
6 = 255

After 6 presses are counted and highest brightness is achieved, the next button press should reset the counter
to 0 so the process can begin anew.

9. This exercise uses the Elegoo remote control, IR detector/demodulator, and an RGB LED: Build a suitable
circuit and write a sketch so that pressing the 1, 2, and 3 buttons on the remote causes the red, green, and blue
elements of the RGB LED to turn on and off. For example, pressing 1 should turn on red and pressing it again
should turn off red (and over and over and over again). Pressing 2 should have the same effects on green, and
pressing 3 should have the same effects on blue. Hint: You will need variables that keep track of the on/off state
of the red, green, and blue elements of the LED. (I personally would use Boolean variables, but other
approaches are equally valid.)

10. Part 6 includes a sketch called “Two Buttons.” It uses arrays! Add two more buttons to the circuit described
in the sketch, and modify the sketch so that it handles four buttons instead of two. This is easy if you
understand how to use arrays.

11. Build a circuit that controls
the red, green, and blue
elements of an REG LED with
three PWM-capable pins. Be
sure to put a 220-ohm resistor
in series with each element of
the LED. Using for loops, write
a sketch that: (a) raises the
brightness of the red element
from 0 to 255 and then lowers
it back to 0. You will need to
delay for a while between
each change in brightness,
otherwise it will happen too
fast and you won’t see much
of anything. You also will have
to decide what step size to use
as you increment and
decrement the brightness. I
suggest that you put the delay
and step in variables at the top
of the sketch so you can easily

play with them. (b) For the green element, do the same as you did for the red. Use the same delay and step
values. (c) For the blue, do the same as you did for the other colors. The final product should look like this:
First, the red goes gradually from dark to full brightness and then back to dark. Next, the green does the same.
Third, the blue does the same. And then we start over with the red.

94

Resources

www.arduino.cc

You can find the official reference for
Arduino programming at
www.arduino.cc/en/Reference/HomePage

And you can find an excellent set of tutorials
at www.arduino.cc/en/Tutorial/HomePage

Examples in the Arduino IDE

Don’t overlook the example sketches
that come with your Arduino IDE;
they illustrate ways to tackle a wide
range of programming tasks. In the
File menu, click Examples and you are
on your way.

http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Tutorial/HomePage

95

Rogelio Escobar’s Website
http://analisisdelaconducta.net/

Dr. Escobar is Professor of Psychology at National
Autonomous University of Mexico. His research
interests include basic and applied research in the
experimental analysis of behavior, the history of
precision instruments in behavior analysis and
experimental psychology, and the development of
electronic equipment for experimental control and
behavioral recording. He has done impressive work in
creating physical computing systems for the study of
operant behavior, and he generously shares his results
– in both hardware and software – on his web site. An
article describing some of his work, published in the
Journal of the Experimental Analysis Behavior, is
included as an appendix to this Reference.

Other Online Resources

• Resistors: https://learn.sparkfun.com/tutorials/resistors#power-rating
• LCDs: http://www.arduino.cc/en/Tutorial/LiquidCrystal
• DHT11 temperature and humidity module: https://learn.adafruit.com/dht/
• HC-SR04 ultrasonic sensor: https://www.cytron.com.my/p-sn-hc-sr04
• Infrared remote control: https://arduino-info.wikispaces.com/IR-RemoteControl
• SG90 servo: https://www.intorobotics.com/tutorial-how-to-control-the-tower-pro-sg90-servo-with-

arduino-uno/
• 28BYJ-48 stepper: https://arduino-info.wikispaces.com/SmallSteppers
• Thermistors: https://learn.adafruit.com/thermistor/overview
• Bi-polar junction transistors: https://learn.sparkfun.com/tutorials/transistors.
• All kinds of stuff: https://arduino-info.wikispaces.com
• About the role of apparatus in the history of behavioral psychology: the Behavioral Apparatus Virtual

Museum curated by Kennon A. Lattal at aubreydaniels.com/institute/museum

Books

There are a lot of books out there. Here’s a few that I think are helpful.

• Getting Started in Electronics by Forrest M. Mims
• Electronics Cookbook: Practical Electronic Recipes with Arduino and Raspberry Pi by Simon Monk
• Programming Arduino: Getting Started with Sketches, Second Edition (2nd Edition) by Simon Monk
• Programming Arduino Next Steps: Going Further with Sketches by Simon Monk

http://analisisdelaconducta.net/
https://learn.sparkfun.com/tutorials/resistors%23power-rating
http://www.arduino.cc/en/Tutorial/LiquidCrystal
https://learn.adafruit.com/dht/
https://www.cytron.com.my/p-sn-hc-sr04
https://arduino-info.wikispaces.com/IR-RemoteControl
https://www.intorobotics.com/tutorial-how-to-control-the-tower-pro-sg90-servo-with-arduino-uno/
https://www.intorobotics.com/tutorial-how-to-control-the-tower-pro-sg90-servo-with-arduino-uno/
https://arduino-info.wikispaces.com/SmallSteppers
https://learn.adafruit.com/thermistor/overview
https://learn.sparkfun.com/tutorials/transistors
https://arduino-info.wikispaces.com/
http://aubreydaniels.com/institute/museum

96

Appendices

Overview

Elegoo Uno Project Super Starter Kit

Page 97. A list of the components in the kit we used in the Spring 2017 workshoip.

Escobar & Perez-Herrera (2015)

Page 98. An article describing a physical computing system for operant conditioning research developed
in Rogelio Escobar’s laboratory at the National Autonomous University of Mexico. The system uses an
Arduino to interface behavioral test chambers with a PC running a Visual Basic program.

Stepper 360 Dial

Page 107. A dial and pointer that you can cut out and attach to a stepper motor. See the “Stepper by
Degree” sketch that is reprinted in Part 6.

97

Elegoo Uno Project Super Starter Kit

Here are the components in the kit; the ones
used in the Spring 2017 workshop are in bold.

1 Uno R3 Controller Board
1 LCD1602 Module (with pin header)
1 Breadboard Expansion Board
1 Power Supply Module
1 Joystick Module
1 IR Receiver
1 Servo Motor (SG90)
1 Stepper Motor (28BYJ-48)
1 ULN2003 Stepper Motor Driver Board
1 Ultrasonic Sensor (HC-SR04)
1 Temperature & Humidity Module (DHT11)
1 9V Battery with DC
1 65 Jumper Wire
1 USB Cable
1 Active Buzzer
1 Passive Buzzer
2 Potentiometer
1 5V Relay (Songle SRD-05VDC-SLC-C)
1 Breadboard
1 Remote
1 Tilt Switch
5 Button (small)
1 1 digit 7-segment Display
1 4 digit 7-segment Display
5 Yellow LED
5 Blue LED
5 Green LED
5 Red LED
1 RGB LED
2 Photoresistor
1 Thermistor
2 Diode Rectifier (1N4007)
2 NPN Transistor (PN2222)
1 IC 74HC595
30 Resistor
10 Female-to-male Dupont Wire

Available from Amazon.

https://www.amazon.com/Elegoo-Project-Tutorial-Prototype-Expansion/dp/B01D8KOZF4/ref=sr_1_fkmr0_1?ie=UTF8&qid=1478216852&sr=8-1-fkmr0&keywords=eloggo+uno+project

98

Escobar & Perez-Herrera (2015)

99

100

101

102

103

104

105

106

107

Stepper 360 Dial

To measure the movement of the 28BYJ-48 stepper motor in degrees, cut out the meter face, affix it to the
motor, and then fit the pointer onto the shaft of the motor.

Stepper motor with dial and pointer
attached (the dial blocks your view of the
most of the motor). You can see the shaft
coming through the pointer.

Note the rectangles in the dial
and pointer. Be sure to cut these
out to allow the shaft of the
motor poke through the dial and
to allow the pointer to be fixed
to the shaft.

108

109

Quick Reference

110

Basic Structure of an Arduino Sketch

Variables, Constants, Arrays

int: Can store an integer (a whole number) between -32,768 and 32,767.
long: An integer that can vary from -2,147,483,648 to 2,147,483,647.
float: Floating-point numbers, that is, numbers with a decimal point.
String: Text, that is, a string of characters (note the upper-case ‘S”).
boolean: Can hold either of two values: true or false.

Declare a variable by stating the data type followed by the name, e.g.: int respCount;
To declare a constant, add const to the beginning and assign a value, e.g.: const int ITI = 5000;

An array is a collection of variables with a single name, differentiated by an index number. The most common way to
declare an array is illustrated by this statement which would create an array of 100 integers, with index values from 0 to 99:
int responseLatency[100];

Arithmetic Operators

= Assignment operator, e.g. x = 3 assigns x the value of 3. Not to be confused with == which is a comparison operator.

+ Addition

- Subraction

* Multiplication

/ Division

% Modulo. Returns the remainder when one integer is divided by another. If x = 17 and y = 5 then x % y returns 2.

Math Functions

abs(x) Returns the absolute value of x.

constrain(x,a,b) Constrains x to the range from a to b inclusive. For example, if x = 106 then
contrain(x, 0, 100) would return 100.

map(val, fromMin, fromMax, toMin, toMax) Takes “val” which can have a low of
“fromMin” and a high of “fromMax”, and interpolates into a new range with a low of “toMin” and and a high of “toMax”.
All values are integers. This functiont may come in handy when dealing with analog input.

111

max(x,y) Returns the higher of two numbers. If x = 5 and y = 1 then max(x, y) returns 5.

min(x,y) Returns the lower of two numbers. If x = 5 and y = 1 then min(x, y) returns 1.

pow(b,e) Raises b to the eth power. If b = 10 and e = 3 then pow(b, e) will return 1000. Note that e can be a fraction:
If b = 10 and e = .5 then pow(b, e) = 3.16.

sqrt(x)Returns the square root of x.

int(x), long(x), float(x)converts x to an int, a long, or a float, respectively.

string.toFloat()converts string to a float.

string.toInt()converts string to an int.

Comparison Operators

== Equal to. Not to be confused with = which is the arithmetic assignment operator.

!= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

Boolean Operators

&& Logical “and”

|| Logical “or” (these characters are typed by pressing your keyboard’s back-slash key with the Shift key held down)

! Logical “not” (negation)

Functions

A function is a block of code that performs some well-defined
duty (it carries out a function) and can be called to action by
other code within the sketch.

112

Serial Communication

Serial.begin(baud); Sets up the communications link between the Arduino and the PC. The “baud”
parameter is replaced with a number representing the desired baud rate (e.g., 9600). It should appear in the setup section
of your sketch.

Serial.setTimeout(milliseconds); Sets the amount of time, in milliseconds, that the sketch
will spend reading the serial port before moving on. This function should appear in the setup section of your sketch. The
default is 1000, a long time to wait. If you anticipate short strings, the time limit can be a few milliseconds. Try different
limits to see what suits your purpose.

Serial.available() Returns the number of characters available to be read from the serial port. If the
result is 0, then there is nothing in the buffer, that is, nothing to read.

Serial.readString() Tries to read a string of characters from the serial port. If will persevere until it
reaches the time limit imposed by the “Serial.setTimeout()” function.

Serial.print(string); and Serial.println(string); Both functions send a
string of characters from the Arduino through the serial port to the PC. They differ in one respect: “print” simply sends the
string whereas “println” sends the string and follows with a newline character that causes the next string to be printed on
the next line.

Timing

delay(milliseconds); Pauses (suspends) the sketch for the specified milliseconds.

delayMicroseconds(microseconds); Pauses the sketch for the specified microseconds.

millis()Returns the time in milliseconds since the Arduino began running the current sketch. This number will
overflow (go back to zero) after approximately 50 days. Use a long variable, rather than an int, to store the result

micros() Returns the time in microseconds since the Arduino began running the current sketch. This number it
returns will overflow (go back to zero), after approximately 70 minutes. Because micros() can return such a large number,
use a long variable, rather than an int, to store the result.

Digital Input

pinMode(pin, INPUT_PULLUP); Configures the designated pin as an input and activates the
internal pullup circuit so that the pin is held high in its resting state. It should appear in the setup section of your sketch.

digitalRead(pin)Returns the current state of the pin, LOW or HIGH.

Digital Output

pinMode(pin, OUTPUT); Configures the designated pin as an output.

digitalWrite(pin, HIGH); and digitalWrite(pin, LOW); Changes the
state of the output pin; setting it HIGH allows 5V to flow and setting it LOW grounds it.

113

Analog Input

analogRead(pin) Reads the voltage on the designated pin and returns a number between 0 (if the pin is
connected to GND) and 1,023 (if the pin is at 5V). The pin has to be one of the six on the Arduino Uno that are connected to
analog-to-digital conversion channels. These pins are labeled A0 through A5 on the Arduino; your sketch can refer to them
by these their labels (which are treated as integer constants by the Arduino compiler) or by their actual pin number (14
through 19).

Analog Output

analogWrite(pin,dutyCycle); The Arduino Uno does not support true analog output, but it can
mimic it with this function. Here “pin” must be one of the pins capable of Pulse Width Modulation: 3, 5, 6, 9, 10,
11. “dutyCycle,” is a value between 0 and 255 that expresses the part of the pin’s normal cycle during which
the pin will be HIGH. For example, a dutyCycle value of 63 is 25% of the way between 0 and 255. This value will
cause the pin to be HIGH for 25% for the cycle (the “duty” part) and LOW for the other 75%.

Branching

if (expression){
 … code that will be executed if the expression is true…
 }

if (expression) {
 … code that will be executed if the expression is true…
 }
 else {
 … code that will be executed if the expression is false…
 }

 switch (variable) {
 case 1:
 … code that will be executed if variable == 1…
 break;
 case 2:
 … code that will be executed if variable == 2…
 break;
 case 3:
 … code that will be executed if variable == 3…
 break;

 … etc., etc., as many cases as you need…

 default:
 … code that will be executed if no match is found…
 break;
 }

114

Looping

The for loop’s header has three parts:

Initialization: Declare an integer type variable (if it hasn’t been declared already) and set a starting value.

Test: A comparison involving the variable. The loop will execute until this comparison is false.

Increment or Decrement: An expression that increases or decreases the value of the variable.

In the example above, the code in the loop will run repeatedly, incrementing x after each iteration, until the comparison
‘x < 100’ is false.

Sound

tone(pin,frequency,duration); Generates a square wave on the designated pin, at the
designated frequency (50% on, 50% off), for the specified duration in milliseconds. The last parameter is optional; if
omitted, the tone will play continuously. The minimum frequency is 31 and the maximum is 65,535. On the Arduino Uno,
this function will interfere with Pulse Width Modulation [i.e., with the analogWrite() function] on Pins 3 and 11.

noTone(pin); Turns off the square wave generated by a previous tone() function on the designated pin.

115

Resistor Decoder by Bret Victor
http://w

orrydream
.com

/ResistorDecoder/

N
ote: The fourth band is the resistor’s tolerance. Gold = 5%

. Silver = 10%
.

http://worrydream.com/ResistorDecoder/

